BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 1150617)

  • 1. Separation of phenylalanine transport events by using selective inhibitors, and identification of a specific uncoupler activity in Yersinia pestis.
    Smith PB; Montie TC
    J Bacteriol; 1975 Jun; 122(3):1053-61. PubMed ID: 1150617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aromatic amino acid transport in Yersinia pestis.
    Smith PB; Montie TC
    J Bacteriol; 1975 Jun; 122(3):1045-52. PubMed ID: 238939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methionine transport in Yersinia pestis.
    Montie DB; Montie TC
    J Bacteriol; 1975 Oct; 124(1):296-306. PubMed ID: 1176434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in coupling of energy to glycine and phenylalanine transport in aerobically grown Escherichia coli.
    Sprott GD; Dimock K; Martin WG; Schneider H
    J Bacteriol; 1975 Sep; 123(3):828-36. PubMed ID: 1099078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Source of energy for gliding motility in Flexibacter polymorphus: effects of metabolic and respiratory inhibitors on gliding movement.
    Ridgway HF
    J Bacteriol; 1977 Aug; 131(2):544-56. PubMed ID: 885839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose transport in isolated prosthecae of Asticcacaulis biprosthecum.
    Larson RJ; Pate JL
    J Bacteriol; 1976 Apr; 126(1):282-93. PubMed ID: 4425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport of phenylalanine by conidia of Fusarium sulphureum.
    Barran LR
    Can J Microbiol; 1976 Sep; 22(9):1390-6. PubMed ID: 10072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a lysine-specific active transport system in Rickettsia prowazeki.
    Smith DK; Winkler HH
    J Bacteriol; 1977 Mar; 129(3):1349-55. PubMed ID: 403176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of sugars and amino acids in bacteria. XV. Comparative studies on the effects of various energy poisons on the oxidative and phosphorylating activities and energy coupling reactions for the active transport systems for amino acids in E. coli.
    Anraku Y; Kin E; Tanaka Y
    J Biochem; 1975 Jul; 78(1):165-79. PubMed ID: 1104599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nature of the specificity of alcohol coupling to L-alanine transport into isolated membrane vesicles of a marine pseudomonad.
    Sprott GD; MacLeod RA
    J Bacteriol; 1974 Mar; 117(3):1043-54. PubMed ID: 4360536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of active transport in isolated membrane vesicles. I. The site of energy coupling between D-lactic dehydrogenase and beta-galactoside transport in Escherichia coli membrane vesicles.
    Barnes EM; Kaback HR
    J Biol Chem; 1971 Sep; 246(17):5518-22. PubMed ID: 4330922
    [No Abstract]   [Full Text] [Related]  

  • 12. Phosphate transport in rat liver mitochondria. Kinetics and energy requirements.
    Coty WA; Pedersen PL
    J Biol Chem; 1974 Apr; 249(8):2593-8. PubMed ID: 4822505
    [No Abstract]   [Full Text] [Related]  

  • 13. Different mechanisms of energy coupling for transport of various amino acids in cells of Mycobacterium phlei.
    Prasad R; Kalra VK; Brodie AF
    J Biol Chem; 1976 Apr; 251(8):2493-8. PubMed ID: 1262332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose transport in Brucella abortus.
    Rest RF; Robertson DC
    J Bacteriol; 1974 Apr; 118(1):250-8. PubMed ID: 4206873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of respiratory inhibitors on the motility of Pseudomonas fluorescens.
    Faust MA; Doetsch RN
    J Bacteriol; 1969 Feb; 97(2):806-11. PubMed ID: 4180008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential inactivation of the "L" and "Ly+" amino acid transport systems by a sulfhydryl reagent and a photo-affinity probe.
    Hare JD; Marinetti GV; Meisler AI; Tometsko AM
    Biochim Biophys Acta; 1976 Sep; 443(3):485-93. PubMed ID: 183824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the action of epinephrine and a respiratory chain uncoupler, 2,4-dinitrophenol, on Ca2+-mobilization in isolated hepatocytes and perfused livers.
    Tohkin M; Yoshimatsu N; Matsubara T
    Jpn J Pharmacol; 1988 Jan; 46(1):61-9. PubMed ID: 3367547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy-coupled influx of thiomethylgalactoside into Escherichia coli.
    Manno JA; Schachter D
    J Biol Chem; 1970 Mar; 245(5):1217-23. PubMed ID: 4906847
    [No Abstract]   [Full Text] [Related]  

  • 19. H+, K+, and Na+ transport across phospholipid vesicular membrane by the combined action of proton uncoupler 2,4-dinitrophenol and valinomycin.
    Prabhananda BS; Kombrabail MH
    Biochim Biophys Acta; 1996 Jul; 1282(2):193-9. PubMed ID: 8703973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Influence of glyoxylic acid on properties of isolated mitochondria].
    Lucas M; Pons AM
    Biochimie; 1975; 57(5):637-45. PubMed ID: 1182220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.