These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 11506207)

  • 1. Immobilization of arsenic in tailing by using iron and hydrogen peroxide.
    Chung IJ; Choi YS; Hong SW; Park HM
    Environ Technol; 2001 Jul; 22(7):831-5. PubMed ID: 11506207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Fenton-like oxidation process using corrosion of iron metal sheet surfaces in the presence of hydrogen peroxide: a batch process study using model pollutants.
    Namkung KC; Burgess AE; Bremner DH
    Environ Technol; 2005 Mar; 26(3):341-52. PubMed ID: 15881030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of a novel electro-Fenton method with Fenton's reagent in treating a highly contaminated wastewater.
    Huang YH; Chen CC; Huang GH; Chou SS
    Water Sci Technol; 2001; 43(2):17-24. PubMed ID: 11380176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in Fenton reaction.
    Pang SY; Jiang J; Ma J
    Environ Sci Technol; 2011 Jan; 45(1):307-12. PubMed ID: 21133375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fenton treatment of olive oil mill wastewater--applicability of the method and parameters effects on the degradation process.
    Nasr B; Ahmed B; Abdellatif G
    J Environ Sci (China); 2004; 16(6):942-4. PubMed ID: 15900725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treatment of non-biodegradable wastewater by electro-Fenton method.
    Chang PH; Huang YH; Hsueh CL; Lu MC; Huang GH
    Water Sci Technol; 2004; 49(4):213-8. PubMed ID: 15077974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical and biological removal of arsenic from sewage sludge.
    Ito A; Takachi T; Aizawa J; Umita T
    Water Sci Technol; 2001; 44(10):59-64. PubMed ID: 11794682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption and removal of arsenic from water by iron ore mining waste.
    Nguyen TV; Nguyen TV; Pham TL; Vigneswaran S; Ngo HH; Kandasamy J; Nguyen HK; Nguyen DT
    Water Sci Technol; 2009; 60(9):2301-8. PubMed ID: 19901461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the reaction pathway of OH radicals produced by Fenton oxidation in the conditions of wastewater treatment.
    Yoon J; Lee Y; Kim S
    Water Sci Technol; 2001; 44(5):15-21. PubMed ID: 11695453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and optimization of dark Fenton oxidation for the treatment of textile wastewaters with high organic load.
    Papadopoulos AE; Fatta D; Loizidou M
    J Hazard Mater; 2007 Jul; 146(3):558-63. PubMed ID: 17573189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid degradation of p-arsanilic acid with simultaneous arsenic removal from aqueous solution using Fenton process.
    Xie X; Hu Y; Cheng H
    Water Res; 2016 Feb; 89():59-67. PubMed ID: 26638133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal experimental design and artificial neural networks applied to the photochemically enhanced Fenton reaction.
    Göb S; Oliveros E; Bossmann SH; Braun AM; Nascimento CA; Guardani R
    Water Sci Technol; 2001; 44(5):339-45. PubMed ID: 11695480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the potential of indigenous calcareous shale for neutralization and removal of arsenic and heavy metals from acid mine drainage in the Taxco mining area, Mexico.
    Romero FM; Núñez L; Gutiérrez ME; Armienta MA; Ceniceros-Gómez AE
    Arch Environ Contam Toxicol; 2011 Feb; 60(2):191-203. PubMed ID: 20523977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mobilisation of arsenic from a mining soil in batch slurry experiments under bio-oxidative conditions.
    Bayard R; Chatain V; Gachet C; Troadec A; Gourdon R
    Water Res; 2006 Mar; 40(6):1240-1248. PubMed ID: 16529789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing Fenton oxidation of TNT and RDX through pretreatment with zero-valent iron.
    Oh SY; Chiu PC; Kim BJ; Cha DK
    Water Res; 2003 Oct; 37(17):4275-83. PubMed ID: 12946911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of arsenic from water by zero-valent iron.
    Bang S; Korfiatis GP; Meng X
    J Hazard Mater; 2005 May; 121(1-3):61-7. PubMed ID: 15885407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comment on "Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in Fenton reaction".
    Remucal CK; Lee C; Sedlak DL
    Environ Sci Technol; 2011 Apr; 45(7):3177-8; author reply 3179-80. PubMed ID: 21375289
    [No Abstract]   [Full Text] [Related]  

  • 18. Immobilization of uranium and arsenic by injectible iron and hydrogen stimulated autotrophic sulphate reduction.
    Burghardt D; Simon E; Knöller K; Kassahun A
    J Contam Hydrol; 2007 Dec; 94(3-4):305-14. PubMed ID: 17719126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic oxidation by UV radiation combined with hydrogen peroxide.
    Sorlini S; Gialdini F; Stefan M
    Water Sci Technol; 2010; 61(2):339-44. PubMed ID: 20107260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dihydroxybenzenes: driven Fenton reactions.
    Rodríguez J; Parra C; Contreras ; Freer J; Baeza J
    Water Sci Technol; 2001; 44(5):251-6. PubMed ID: 11695467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.