BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 11506210)

  • 1. Oxygen dynamics in crude oil contaminated salt marshes: II. Carbonaceous sediment oxygen demand model.
    Shin WS; Pardue JH; Choi SJ
    Environ Technol; 2001 Jul; 22(7):855-67. PubMed ID: 11506210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen dynamics in crude oil contaminated salt marshes: I. Aerobic respiration model.
    Shin WS; Pardue JH
    Environ Technol; 2001 Jul; 22(7):845-54. PubMed ID: 11506209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen dynamics in petroleum hydrocarbon contaminated salt marsh soils: III. A rate model.
    Shin WS; Park JC; Pardue JH
    Environ Technol; 2003 Jul; 24(7):831-43. PubMed ID: 12916836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Level and degradation of Deepwater Horizon spilled oil in coastal marsh sediments and pore-water.
    Natter M; Keevan J; Wang Y; Keimowitz AR; Okeke BC; Son A; Lee MK
    Environ Sci Technol; 2012 Jun; 46(11):5744-55. PubMed ID: 22571231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of slow-release fertilizer and biopolymers for stimulating hydrocarbon biodegradation in oil-contaminated beach sediments.
    Xu R; Yong LC; Lim YG; Obbard JP
    Mar Pollut Bull; 2005; 51(8-12):1101-10. PubMed ID: 16291209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biogenic U(IV) oxidation by dissolved oxygen and nitrate in sediment after prolonged U(VI)/Fe(III)/SO(4)(2-) reduction.
    Moon HS; Komlos J; Jaffé PR
    J Contam Hydrol; 2009 Feb; 105(1-2):18-27. PubMed ID: 19064300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of chlorate, nitrate, and perchlorate to promote crude oil mineralization in salt marsh sediments.
    Brundrett M; Horita J; Anderson T; Pardue J; Reible D; Jackson WA
    Environ Sci Pollut Res Int; 2015 Oct; 22(20):15377-85. PubMed ID: 25854211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crude oil bioremediation field experiment in the Sea of Japan.
    Maki H; Hirayama N; Hiwatari T; Kohata K; Uchiyama H; Watanabe M; Yamasaki F; Furuki M
    Mar Pollut Bull; 2003; 47(1-6):74-7. PubMed ID: 12787600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of phosphogypsum impact on the salt-marshes of the Tinto river (SW Spain): role of natural attenuation processes.
    Pérez-López R; Castillo J; Sarmiento AM; Nieto JM
    Mar Pollut Bull; 2011 Dec; 62(12):2787-96. PubMed ID: 21992931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox dynamics during recovery of an oil-impacted estuarine wetland.
    LaRiviere DJ; Autenrieth RL; Bonner JS
    Water Res; 2003 Aug; 37(14):3307-18. PubMed ID: 12834723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effectiveness of bioremediation of crude oil contaminated subantarctic intertidal sediment: the microbial response.
    Delille D; Delille B; Pelletier E
    Microb Ecol; 2002 Aug; 44(2):118-26. PubMed ID: 12060863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of estuarine meio- and macrofauna to in situ bioremediation of oil-contaminated sediment.
    Schratzberger M; Daniel F; Wall CM; Kilbride R; Macnaughton SJ; Boyd SE; Rees HL; Lee K; Swannell RP
    Mar Pollut Bull; 2003 Apr; 46(4):430-43. PubMed ID: 12705916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioturbation and the role of microniches for sulfate reduction in coastal marine sediments.
    Bertics VJ; Ziebis W
    Environ Microbiol; 2010 Nov; 12(11):3022-34. PubMed ID: 20561019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seasonal variability of denitrification efficiency in northern salt marshes: an example from the St. Lawrence Estuary.
    Poulin P; Pelletier E; Saint-Louis R
    Mar Environ Res; 2007 Jun; 63(5):490-505. PubMed ID: 17276505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Evolution of hydrocarbons and bacterial activity in the marine sediments contaminated by crude oil overflow and treated].
    Bodennec G; Desmarquest JP; Jensen B; Kantin R
    Int J Environ Anal Chem; 1987; 29(3):153-78. PubMed ID: 3596891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sedimentary microbial oxygen demand for laminar flow over a sediment bed of finite length.
    Higashino M; Stefan HG
    Water Res; 2005 Sep; 39(14):3153-66. PubMed ID: 16054191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model of microbial activity in lake sediments in response to periodic water-column mixing.
    Gantzer CJ; Stefan HG
    Water Res; 2003 Jul; 37(12):2833-46. PubMed ID: 12767287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of oil spill on seawater infiltration and macrobenthic community in tidal flats.
    Chung IY; Cho KJ; Hiraoka K; Mukai T; Nishijima W; Takimoto K; Okada M
    Mar Pollut Bull; 2004 Dec; 49(11-12):959-63. PubMed ID: 15556181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nutrient and oxygen concentrations within the sediments of an Alaskan beach polluted with the Exxon Valdez oil spill.
    Boufadel MC; Sharifi Y; Van Aken B; Wrenn BA; Lee K
    Environ Sci Technol; 2010 Oct; 44(19):7418-24. PubMed ID: 20809617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling of phosphorus dynamics in aquatic sediments: II--examination of model performance.
    Wang H; Appan A; Gulliver JS
    Water Res; 2003 Sep; 37(16):3939-53. PubMed ID: 12909113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.