These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 11506210)

  • 21. Occurrence and rates of terminal electron-accepting processes and recharge processes in petroleum hydrocarbon-contaminated subsurface.
    Salminen JM; Hänninen PJ; Leveinen J; Lintinen PT; Jørgensen KS
    J Environ Qual; 2006; 35(6):2273-82. PubMed ID: 17071898
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of biosurfactant and fertilizer on biodegradation of crude oil by marine isolates of Bacillus megaterium, Corynebacterium kutscheri and Pseudomonas aeruginosa.
    Thavasi R; Jayalakshmi S; Banat IM
    Bioresour Technol; 2011 Jan; 102(2):772-8. PubMed ID: 20863694
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biotreatment of sulfate-rich wastewater in an anaerobic/micro-aerobic bioreactor system.
    Chuang SH; Pai TY; Horng RY
    Environ Technol; 2005 Sep; 26(9):993-1001. PubMed ID: 16196408
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anaerobic degradation of p-xylene in sediment-free sulfate-reducing enrichment culture.
    Nakagawa T; Sato S; Fukui M
    Biodegradation; 2008 Nov; 19(6):909-13. PubMed ID: 18409067
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemical and microbiological changes in laboratory incubations of nitrate amendment "sour" produced waters from three western Canadian oil fields.
    Eckford RE; Fedorak PM
    J Ind Microbiol Biotechnol; 2002 Nov; 29(5):243-54. PubMed ID: 12407458
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rates of hexavalent chromium reduction in anoxic estuarine sediments: pH effects and the role of acid volatile sulfides.
    Graham AM; Bouwer EJ
    Environ Sci Technol; 2010 Jan; 44(1):136-42. PubMed ID: 20039744
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of initial oil concentration and dispersant on crude oil biodegradation in contaminated seawater.
    Zahed MA; Aziz HA; Isa MH; Mohajeri L
    Bull Environ Contam Toxicol; 2010 Apr; 84(4):438-42. PubMed ID: 20224975
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments.
    Atkinson CA; Jolley DF; Simpson SL
    Chemosphere; 2007 Nov; 69(9):1428-37. PubMed ID: 17568653
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sulfur analyses as tracers of microbial degradation of hydrocarbons in the capillary fringe.
    Van Stempvoort DR; Kwong YT
    J Contam Hydrol; 2010 May; 114(1-4):1-17. PubMed ID: 20227785
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crude oil bioremediation in sub-Antarctic intertidal sediments: chemistry and toxicity of oiled residues.
    Pelletier E; Delille D; Delille B
    Mar Environ Res; 2004 May; 57(4):311-27. PubMed ID: 14749062
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vegetable oil spills on salt marsh sediments; comparison between sunflower and linseed oils.
    Pereira MG; Mudge SM; Latchford J
    Mar Environ Res; 2003 Sep; 56(3):367-85. PubMed ID: 12738220
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Avoidance of crude-oil contaminated sediment by the Australian seastar, Patiriella exigua (Echinodermata: Asteroidea).
    Ryder K; Temara A; Holdway DA
    Mar Pollut Bull; 2004 Dec; 49(11-12):900-9. PubMed ID: 15556174
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of manipulating sediment pH on the porewater chemistry of copper- and zinc-spiked sediments.
    Hutchins CM; Teasdale PR; Lee J; Simpson SL
    Chemosphere; 2007 Oct; 69(7):1089-99. PubMed ID: 17572473
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of emergent macrophytes on the dynamics of sulfur species and trace metals in wetland sediments.
    Choi JH; Park SS; Jaffé PR
    Environ Pollut; 2006 Mar; 140(2):286-93. PubMed ID: 16168538
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of indigenous microorganisms in the biodegradation of naturally occurring petroleum, the reduction of iron, and the mobilization of arsenite from west bengal aquifer sediments.
    Rowland HA; Boothman C; Pancost R; Gault AG; Polya DA; Lloyd JR
    J Environ Qual; 2009; 38(4):1598-607. PubMed ID: 19549936
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments.
    Butler BA
    Water Res; 2009 Mar; 43(5):1392-402. PubMed ID: 19110291
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Non-steady state modeling of arsenic diagenesis in lake sediments.
    Couture RM; Shafei B; Van Cappellen P; Tessier A; Gobeil C
    Environ Sci Technol; 2010 Jan; 44(1):197-203. PubMed ID: 19957997
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biostimulation of iron reduction and subsequent oxidation of sediment containing Fe-silicates and Fe-oxides: effect of redox cycling on Fe(III) bioreduction.
    Komlos J; Kukkadapu RK; Zachara JM; Jaffé PR
    Water Res; 2007 Jul; 41(13):2996-3004. PubMed ID: 17467035
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Geochemical survey and metal bioaccumulation of three bivalve species (Crassostrea gigas, Cerastoderma edule and Ruditapes philippinarum) in the Nord Medoc salt marshes (Gironde estuary, France).
    Baudrimont M; Schäfer J; Marie V; Maury-Brachet R; Bossy C; Boudou A; Blanc G
    Sci Total Environ; 2005 Jan; 337(1-3):265-80. PubMed ID: 15626396
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sulfide formation in freshwater sediments, by sulfate-reducing microorganisms with diverse tolerance to salt.
    Rees GN; Baldwin DS; Watson GO; Hall KC
    Sci Total Environ; 2010 Dec; 409(1):134-9. PubMed ID: 20934202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.