These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 1150626)

  • 21. Genetics of alkane oxidation by Pseudomonas oleovorans.
    van Beilen JB; Wubbolts MG; Witholt B
    Biodegradation; 1994 Dec; 5(3-4):161-74. PubMed ID: 7532480
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Oxidation of n-alkanes by Pseudomonas aeruginosa strain carrying the plasmid pBS251].
    Andreeva AL; Il'chenko AP; Boronin AM
    Mikrobiologiia; 1985; 54(6):944-7. PubMed ID: 3937960
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Complex of LaoA and LaoB Acts as a Tat-Dependent Dehydrogenase for Long-Chain Alcohols in Pseudomonas aeruginosa.
    Panasia G; Drees SL; Fetzner S; Philipp B
    Appl Environ Microbiol; 2021 Jul; 87(16):e0076221. PubMed ID: 34085859
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Growth on octane alters the membrane lipid fatty acids of Pseudomonas oleovorans due to the induction of alkB and synthesis of octanol.
    Chen Q; Janssen DB; Witholt B
    J Bacteriol; 1995 Dec; 177(23):6894-901. PubMed ID: 7592483
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of enzymes of the 3,5-xylenol-degradative pathway in Pseudomonas putida: evidence for a plasmid.
    Hopper DJ; Kemp PD
    J Bacteriol; 1980 Apr; 142(1):21-6. PubMed ID: 6989805
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Whole-cell bio-oxidation of n-dodecane using the alkane hydroxylase system of P. putida GPo1 expressed in E. coli.
    Grant C; Woodley JM; Baganz F
    Enzyme Microb Technol; 2011 May; 48(6-7):480-6. PubMed ID: 22113020
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Involvement of BmoR and BmoG in n-alkane metabolism in 'Pseudomonas butanovora'.
    Kurth EG; Doughty DM; Bottomley PJ; Arp DJ; Sayavedra-Soto LA
    Microbiology (Reading); 2008 Jan; 154(Pt 1):139-147. PubMed ID: 18174133
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Purification and characterisation of TOL plasmid-encoded benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase of Pseudomonas putida.
    Shaw JP; Harayama S
    Eur J Biochem; 1990 Aug; 191(3):705-14. PubMed ID: 2202600
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reversal by DNA amplifications of an unusual mutation blocking alkane and alcohol utilization in Pseudomonas putida.
    McBeth DL; Shapiro JA
    Mol Gen Genet; 1984; 197(3):384-91. PubMed ID: 6597334
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Primary oxidation mechanisms in degradation of aliphatic hydrocarbons by bacterial enzyme systems (author's transl)].
    Hammer KD; Liemann F
    Zentralbl Bakteriol Orig B; 1976 Jul; 162(1-2):169-79. PubMed ID: 998045
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of the OCT plasmid encoding alkane oxidation and mercury resistance in Pseudomonas putida.
    Harder PA; Kunz DA
    J Bacteriol; 1986 Feb; 165(2):650-3. PubMed ID: 3003035
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Product repression of alkane monooxygenase expression in Pseudomonas butanovora.
    Doughty DM; Sayavedra-Soto LA; Arp DJ; Bottomley PJ
    J Bacteriol; 2006 Apr; 188(7):2586-92. PubMed ID: 16547046
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The isolation and characterization of alkane-oxidizing organisms and the effect of growth substrate on isocitric lyase.
    Trust TJ; Millis NF
    J Gen Microbiol; 1970 May; 61(2):245-54. PubMed ID: 5476894
    [No Abstract]   [Full Text] [Related]  

  • 34. Alkane oxidation in Candida tropicalis.
    Gallo M; Bertrand JC; Roche B; Azoulay E
    Biochim Biophys Acta; 1973 Mar; 296(3):624-38. PubMed ID: 4143948
    [No Abstract]   [Full Text] [Related]  

  • 35. Fatty aldehyde dehydrogenase multigene family involved in the assimilation of n-alkanes in Yarrowia lipolytica.
    Iwama R; Kobayashi S; Ohta A; Horiuchi H; Fukuda R
    J Biol Chem; 2014 Nov; 289(48):33275-86. PubMed ID: 25315778
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioconversions of aliphatic compounds by Pseudomonas oleovorans in multiphase bioreactors: background and economic potential.
    Witholt B; de Smet MJ; Kingma J; van Beilen JB; Kok M; Lageveen RG; Eggink G
    Trends Biotechnol; 1990 Feb; 8(2):46-52. PubMed ID: 1366497
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of valine catabolism in Pseudomonas putida.
    Marshall VD; Sokatch JR
    J Bacteriol; 1972 Jun; 110(3):1073-81. PubMed ID: 5030618
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Substrate-specificity of benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase encoded by TOL plasmid pWW0. Metabolic and mechanistic implications.
    Shaw JP; Schwager F; Harayama S
    Biochem J; 1992 May; 283 ( Pt 3)(Pt 3):789-94. PubMed ID: 1590768
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of benzyl alcohol dehydrogenases and benzaldehyde dehydrogenases from the benzyl alcohol and mandelate pathways in Acinetobacter calcoaceticus and from the TOL-plasmid-encoded toluene pathway in Pseudomonas putida. N-terminal amino acid sequences, amino acid compositions and immunological cross-reactions.
    Chalmers RM; Keen JN; Fewson CA
    Biochem J; 1991 Jan; 273(Pt 1)(Pt 1):99-107. PubMed ID: 1989592
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNA sequence determination and functional characterization of the OCT-plasmid-encoded alkJKL genes of Pseudomonas oleovorans.
    van Beilen JB; Eggink G; Enequist H; Bos R; Witholt B
    Mol Microbiol; 1992 Nov; 6(21):3121-36. PubMed ID: 1453953
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.