These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 1150630)

  • 1. Induction of alkane hydroxylase proteins by unoxidized alkane in Pseudomonas putida.
    Benson S; Shapiro J
    J Bacteriol; 1975 Aug; 123(2):759-60. PubMed ID: 1150630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of alkane oxidation in Pseudomonas putida.
    Grund A; Shapiro J; Fennewald M; Bacha P; Leahy J; Markbreiter K; Nieder M; Toepfer M
    J Bacteriol; 1975 Aug; 123(2):546-56. PubMed ID: 1150626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological function of the Pseudomonas putida PpG6 (Pseudomonas oleovorans) alkane hydroxylase: monoterminal oxidation of alkanes and fatty acids.
    Nieder M; Shapiro J
    J Bacteriol; 1975 Apr; 122(1):93-8. PubMed ID: 804473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fractionation of inducible alkane hydroxylase activity in Pseudomonas putida and characterization of hydroxylase-negative plasmid mutations.
    Benson S; Fennewald M; Shapiro J; Huettner C
    J Bacteriol; 1977 Nov; 132(2):614-21. PubMed ID: 410794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled and functional expression of the Pseudomonas oleovorans alkane utilizing system in Pseudomonas putida and Escherichia coli.
    Eggink G; Lageveen RG; Altenburg B; Witholt B
    J Biol Chem; 1987 Dec; 262(36):17712-8. PubMed ID: 2826430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local anesthetics block induction of the Pseudomonas alk regulon.
    Benson SA
    J Bacteriol; 1979 Dec; 140(3):1123-5. PubMed ID: 533765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The alkane oxidation system of Pseudomonas oleovorans: induction of the alk genes in Escherichia coli W3110 (pGEc47) affects membrane biogenesis and results in overexpression of alkane hydroxylase in a distinct cytoplasmic membrane subfraction.
    Nieboer M; Kingma J; Witholt B
    Mol Microbiol; 1993 Jun; 8(6):1039-51. PubMed ID: 8361351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulatory mutations of the Pseudomonas plasmid alk regulon.
    Fennewald M; Shapiro J
    J Bacteriol; 1977 Nov; 132(2):622-7. PubMed ID: 410795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmid-determined alcohol dehydrogenase activity in alkane-utilizing strains of Pseudomonas putida.
    Benson S; Shapiro J
    J Bacteriol; 1976 May; 126(2):794-8. PubMed ID: 177405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional analysis of alkane hydroxylases from gram-negative and gram-positive bacteria.
    Smits TH; Balada SB; Witholt B; van Beilen JB
    J Bacteriol; 2002 Mar; 184(6):1733-42. PubMed ID: 11872725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The PalkBFGHJKL promoter is under carbon catabolite repression control in Pseudomonas oleovorans but not in Escherichia coli alk+ recombinants.
    Staijen IE; Marcionelli R; Witholt B
    J Bacteriol; 1999 Mar; 181(5):1610-6. PubMed ID: 10049394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-Alkane oxidation enzymes of a pseudomonad.
    Parekh VR; Traxler RW; Sobek JM
    Appl Environ Microbiol; 1977 Apr; 33(4):881-4. PubMed ID: 869535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular screening for alkane hydroxylase genes in Gram-negative and Gram-positive strains.
    Smits TH; Röthlisberger M; Witholt B; van Beilen JB
    Environ Microbiol; 1999 Aug; 1(4):307-17. PubMed ID: 11207749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of membrane peptides by the Pseudomonas plasmid alk regulon.
    Benson S; Oppici M; Shapiro J; Fennewald M
    J Bacteriol; 1979 Dec; 140(3):754-62. PubMed ID: 533768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of 3-hydroxybenzoate 2-hydroxylase in a Pseudomonas testosteroni mutant.
    Daumy GO; McColl AS
    J Bacteriol; 1982 Jan; 149(1):384-5. PubMed ID: 7054148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alkane biodegradation in Pseudomonas aeruginosa strains isolated from a polluted zone: identification of alkB and alkB-related genes.
    Belhaj A; Desnoues N; Elmerich C
    Res Microbiol; 2002; 153(6):339-44. PubMed ID: 12234007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Regulation of the synthesis of the key enzymes for naphthalene catabolism in Pseudomonas putida and Pseudomonas fluorescens carrying the biodegradation plasmids NAH, pBS3, pBS2 and NPL-1].
    Starovoĭtov II
    Mikrobiologiia; 1985; 54(5):755-62. PubMed ID: 3937034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New alkane-responsive expression vectors for Escherichia coli and pseudomonas.
    Smits TH; Seeger MA; Witholt B; van Beilen JB
    Plasmid; 2001 Jul; 46(1):16-24. PubMed ID: 11535032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elucidation of multiple alkane hydroxylase systems in biodegradation of crude oil n-alkane pollution by Pseudomonas aeruginosa DN1.
    Li YP; Pan JC; Ma YL
    J Appl Microbiol; 2020 Jan; 128(1):151-160. PubMed ID: 31566849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rubredoxins involved in alkane oxidation.
    van Beilen JB; Neuenschwander M; Smits TH; Roth C; Balada SB; Witholt B
    J Bacteriol; 2002 Mar; 184(6):1722-32. PubMed ID: 11872724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.