These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 1150637)

  • 1. Studies on the subsite structure of amylases. I. Interaction of glucoamylase with substrate and analogues studied by difference-spectrophotometry.
    Onishi M; Kegai H; Hiromi K
    J Biochem; 1975 Apr; 77(4):695-703. PubMed ID: 1150637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the subsite structure of amylases. III. Inhibition by gluconolactone of the hydrolysis of maltodextrin catalyzed by glucoamylase from Rhizopus niveus.
    Ohnishi M; Yamashita T; Hiromi K
    J Biochem; 1976 May; 79(5):1007-12. PubMed ID: 956133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subsite structure and ligand binding mechanism of glucoamylase.
    Hiromi K; Ohnishi M; Tanaka A
    Mol Cell Biochem; 1983; 51(1):79-95. PubMed ID: 6406831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the subsite structure of amylases. IV. Tryptophan residues of glucoamylase from Rhizopus niveus studied by chemical modification with N-bromosuccinimide.
    Ohnishi M; Hiromi K
    J Biochem; 1976 Jan; 79(1):11-16. PubMed ID: 939754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Static and kinetic studies by fluorometry on the interaction between gluconolactone and glucoamylase from Rh. niveus.
    Ohnishi M; Yamashita T; Hiromi K
    J Biochem; 1977 Jan; 81(1):99-105. PubMed ID: 845140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Static and kinetic studies on the binding of Streptomyces trehalase inhibitor SGI with Rhizopus glucoamylase. Comparison with glucose and gluconolactone.
    Tanaka A; Ohnishi M; Hiromi K; Miyata S; Murao S
    J Biochem; 1982 Jan; 91(1):1-9. PubMed ID: 6461639
    [No Abstract]   [Full Text] [Related]  

  • 7. Minimizing nonproductive substrate binding: a new look at glucoamylase subsite affinities.
    Natarajan SK; Sierks MR
    Biochemistry; 1997 Dec; 36(48):14946-55. PubMed ID: 9398219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of isomaltose and maltose to the glucoamylase from Aspergillus niger, as studied by fluorescence spectrophotometry and steady-state kinetics.
    Ohnishi M; Matsumoto T; Yamanaka T; Hiromi K
    Carbohydr Res; 1990 Sep; 204():187-96. PubMed ID: 2279245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stopped-flow kinetic studies on the binding of gluconolactone and maltose to glucoamylase.
    Tanaka A; Ohnishi M; Hiromi K
    Biochemistry; 1982 Jan; 21(1):107-13. PubMed ID: 7059572
    [No Abstract]   [Full Text] [Related]  

  • 10. [Specificity of fungal alpha-glucosidases].
    Bendetskii KM
    Biokhimiia; 1977 Aug; 42(8):1506-15. PubMed ID: 911942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Difference spectroscopic study of the interaction between soybean beta-amylase and substrate or substrate analogues.
    Nitta Y; Kunikata T; Watanabe T
    J Biochem; 1983 Apr; 93(4):1195-201. PubMed ID: 6190798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the subsite structure of amylases. II. Difference-spectrophotometric studies on the interaction of maltotriose with liquefying alpha-amylase from Bacillus subtilis.
    Ohnishi M; Kegai H; Hiromi K
    J Biochem; 1975 Aug; 78(2):247-51. PubMed ID: 819426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The maltase, glucoamylase and transglucosylase activities of acid -glucosidase from rabbit muscle.
    Palmer TN
    Biochem J; 1971 Oct; 124(4):713-24. PubMed ID: 5289198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steady-state inhibitory kinetic studies on the ligand binding modes of Aspergillus niger glucoamylase.
    Tanaka A; Ohya M; Yamamoto T; Nakagawa C; Tsuji T; Senoo K; Obata H
    Biosci Biotechnol Biochem; 1999 Sep; 63(9):1548-52. PubMed ID: 10540741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of glucoamylases from a Rhizopus sp. and Aspergillus saitoi by aminoalcohol derivatives.
    Iwama M; Takahashi T; Inokuchi N; Koyama T; Irie M
    J Biochem; 1985 Aug; 98(2):341-7. PubMed ID: 3934147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of native and SH-modified beta-amylase of soybean with cyclohexadextrin and maltose.
    Mikami B; Nomura K; Morita Y
    J Biochem; 1983 Jul; 94(1):107-13. PubMed ID: 6194150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorometric studies on the binding of gluconolactone, glucose, and glucosides to the subsites of glucoamylase.
    Hiromi K; Tanaka A; Ohnishi M
    Biochemistry; 1982 Jan; 21(1):102-7. PubMed ID: 7059571
    [No Abstract]   [Full Text] [Related]  

  • 18. Subsite affinities of glucoamylase: examination of the validity of the subsite theory.
    Hiromi K; Nitta Y; Numata C; Ono S
    Biochim Biophys Acta; 1973 Apr; 302(2):362-75. PubMed ID: 4699245
    [No Abstract]   [Full Text] [Related]  

  • 19. Carboxyl groups and tryptophan residues in the active site of Rhizopus niveus glucoamylase.
    Inokuchi R
    J Basic Microbiol; 1999; 39(5-6):311-23. PubMed ID: 10629972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissecting the catalytic mechanism of a plant beta-D-glucan glucohydrolase through structural biology using inhibitors and substrate analogues.
    Hrmova M; Fincher GB
    Carbohydr Res; 2007 Sep; 342(12-13):1613-23. PubMed ID: 17548065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.