BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 11506728)

  • 1. Expression of liver-specific functions by rat hepatocytes seeded in treated poly(lactic-co-glycolic) acid biodegradable foams.
    Hasirci V; Berthiaume F; Bondre SP; Gresser JD; Trantolo DJ; Toner M; Wise DL
    Tissue Eng; 2001 Aug; 7(4):385-94. PubMed ID: 11506728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth and metabolism of human hepatocytes on biomodified collagen poly(lactic-co-glycolic acid) three-dimensional scaffold.
    Li J; Li L; Yu H; Cao H; Gao C; Gong Y
    ASAIO J; 2006; 52(3):321-7. PubMed ID: 16760723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superior performance of co-cultured mesenchymal stem cells and hepatocytes in poly(lactic acid-glycolic acid) scaffolds for the treatment of acute liver failure.
    Liu M; Yang J; Hu W; Zhang S; Wang Y
    Biomed Mater; 2016 Feb; 11(1):015008. PubMed ID: 26836957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers.
    Ishaug-Riley SL; Crane-Kruger GM; Yaszemski MJ; Mikos AG
    Biomaterials; 1998 Aug; 19(15):1405-12. PubMed ID: 9758040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining oxygen plasma treatment with anchorage of cationized gelatin for enhancing cell affinity of poly(lactide-co-glycolide).
    Shen H; Hu X; Yang F; Bei J; Wang S
    Biomaterials; 2007 Oct; 28(29):4219-30. PubMed ID: 17618682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds.
    Li M; Mondrinos MJ; Chen X; Gandhi MR; Ko FK; Lelkes PI
    J Biomed Mater Res A; 2006 Dec; 79(4):963-73. PubMed ID: 16948146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of in vitro spermatogenesis using poly(D,L-lactic-co-glycolic acid) (PLGA)-based macroporous biodegradable scaffolds.
    Lee JH; Oh JH; Lee JH; Kim MR; Min CK
    J Tissue Eng Regen Med; 2011 Feb; 5(2):130-7. PubMed ID: 20603864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wetting of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) foams for tissue culture.
    Mikos AG; Lyman MD; Freed LE; Langer R
    Biomaterials; 1994 Jan; 15(1):55-8. PubMed ID: 8161659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications.
    Pattison MA; Wurster S; Webster TJ; Haberstroh KM
    Biomaterials; 2005 May; 26(15):2491-500. PubMed ID: 15585251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of osteoblastic culture conditions on the structure of poly(DL-lactic-co-glycolic acid) foam scaffolds.
    Goldstein AS; Zhu G; Morris GE; Meszlenyi RK; Mikos AG
    Tissue Eng; 1999 Oct; 5(5):421-34. PubMed ID: 10586098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering.
    Yoo HS; Lee EA; Yoon JJ; Park TG
    Biomaterials; 2005 May; 26(14):1925-33. PubMed ID: 15576166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ectopic bone formation by marrow stromal osteoblast transplantation using poly(DL-lactic-co-glycolic acid) foams implanted into the rat mesentery.
    Ishaug-Riley SL; Crane GM; Gurlek A; Miller MJ; Yasko AW; Yaszemski MJ; Mikos AG
    J Biomed Mater Res; 1997 Jul; 36(1):1-8. PubMed ID: 9212383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adhesion behaviours of hepatocytes cultured onto biodegradable polymer surface modified by alkali hydrolysis process.
    Nam YS; Yoon JJ; Lee JG; Park TG
    J Biomater Sci Polym Ed; 1999; 10(11):1145-58. PubMed ID: 10606032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphological and functional analysis of rat hepatocyte spheroids generated on poly(L-lactic acid) polymer in a pulsatile flow bioreactor.
    Török E; Vogel C; Lütgehetmann M; Ma PX; Dandri M; Petersen J; Burda MR; Siebert K; Düllmann J; Rogiers X; Pollok JM
    Tissue Eng; 2006 Jul; 12(7):1881-90. PubMed ID: 16889518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of hesperidin loaded poly(lactic-co-glycolic acid) scaffolds on growth behavior of costal cartilage cells in vitro and in vivo.
    Cho SA; Cha SR; Park SM; Kim KH; Lee HG; Kim EY; Lee D; Khang G
    J Biomater Sci Polym Ed; 2014; 25(6):625-40. PubMed ID: 24588773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of cell response of the poly(lactic-co-glycolic acid)/calcium phosphate cement composite scaffold with unidirectional pore structure by the surface immobilization of collagen via plasma treatment.
    He F; Li J; Ye J
    Colloids Surf B Biointerfaces; 2013 Mar; 103():209-16. PubMed ID: 23201739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation of carboxylation multiwalled carbon nanotubes into biodegradable poly(lactic-co-glycolic acid) for bone tissue engineering.
    Lin C; Wang Y; Lai Y; Yang W; Jiao F; Zhang H; Ye S; Zhang Q
    Colloids Surf B Biointerfaces; 2011 Apr; 83(2):367-75. PubMed ID: 21208787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds.
    Park GE; Pattison MA; Park K; Webster TJ
    Biomaterials; 2005 Jun; 26(16):3075-82. PubMed ID: 15603802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of tissue-engineered cartilage on macroporous biodegradable PLGA scaffold.
    Baek CH; Ko YJ
    Laryngoscope; 2006 Oct; 116(10):1829-34. PubMed ID: 17016212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds.
    Ishaug SL; Crane GM; Miller MJ; Yasko AW; Yaszemski MJ; Mikos AG
    J Biomed Mater Res; 1997 Jul; 36(1):17-28. PubMed ID: 9212385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.