These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 11506784)

  • 1. Circumferential measurement and analysis of strain distribution in the human ACL using a photoelastic coating method.
    Hirokawa S; Yamamoto K; Kawada T
    J Biomech; 2001 Sep; 34(9):1135-43. PubMed ID: 11506784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A photoelastic study of ligament strain.
    Hirokawa S; Yamamoto K; Kawada T
    IEEE Trans Rehabil Eng; 1998 Sep; 6(3):300-8. PubMed ID: 9749907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strain distribution in the ligament using photoelasticity. A direct application to the human ACL.
    Yamamoto K; Hirokawa S; Kawada T
    Med Eng Phys; 1998 Apr; 20(3):161-8. PubMed ID: 9690485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyper-elastic model analysis of anterior cruciate ligament.
    Hirokawa S; Tsuruno R
    Med Eng Phys; 1997 Oct; 19(7):637-51. PubMed ID: 9457697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motion of the anterior cruciate ligament during internal and external rotation at the knee: A cadaveric study.
    Peeler J; Anderson J; Piotrowski S; Stranges G
    Clin Anat; 2017 Oct; 30(7):861-867. PubMed ID: 28466554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative strain in the anterior cruciate ligament and medial collateral ligament during simulated jump landing and sidestep cutting tasks: implications for injury risk.
    Bates NA; Nesbitt RJ; Shearn JT; Myer GD; Hewett TE
    Am J Sports Med; 2015 Sep; 43(9):2259-69. PubMed ID: 26150588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupled motions under compressive load in intact and ACL-deficient knees: a cadaveric study.
    Liu-Barba D; Hull ML; Howell SM
    J Biomech Eng; 2007 Dec; 129(6):818-24. PubMed ID: 18067385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Knee Abduction Affects Greater Magnitude of Change in ACL and MCL Strains Than Matched Internal Tibial Rotation In Vitro.
    Bates NA; Nesbitt RJ; Shearn JT; Myer GD; Hewett TE
    Clin Orthop Relat Res; 2017 Oct; 475(10):2385-2396. PubMed ID: 28455730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative In Situ Analysis of the Anterior Cruciate Ligament: Length, Midsubstance Cross-sectional Area, and Insertion Site Areas.
    Fujimaki Y; Thorhauer E; Sasaki Y; Smolinski P; Tashman S; Fu FH
    Am J Sports Med; 2016 Jan; 44(1):118-25. PubMed ID: 26564792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An inverse dynamics modeling approach to determine the restraining function of human knee ligament bundles.
    Mommersteeg TJ; Huiskes R; Blankevoort L; Kooloos JG; Kauer JM
    J Biomech; 1997 Feb; 30(2):139-46. PubMed ID: 9001934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sagittal plane model of the knee and cruciate ligaments with application of a sensitivity analysis.
    Beynnon B; Yu J; Huston D; Fleming B; Johnson R; Haugh L; Pope MH
    J Biomech Eng; 1996 May; 118(2):227-39. PubMed ID: 8738789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The anterior cruciate ligament provides resistance to externally applied anterior tibial force but not to internal rotational torque during simulated weight-bearing flexion.
    Wünschel M; Müller O; Lo J; Obloh C; Wülker N
    Arthroscopy; 2010 Nov; 26(11):1520-7. PubMed ID: 20920837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rotational Laxity Control by the Anterolateral Ligament and the Lateral Meniscus Is Dependent on Knee Flexion Angle: A Cadaveric Biomechanical Study.
    Lording T; Corbo G; Bryant D; Burkhart TA; Getgood A
    Clin Orthop Relat Res; 2017 Oct; 475(10):2401-2408. PubMed ID: 28536855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional deformation and stress distribution in an analytical/computational model of the anterior cruciate ligament.
    Hirokawa S; Tsuruno R
    J Biomech; 2000 Sep; 33(9):1069-77. PubMed ID: 10854879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-situ mechanical behavior and slackness of the anterior cruciate ligament at multiple knee flexion angles.
    Rachmat HH; Janssen D; Verkerke GJ; Diercks RL; Verdonschot N
    Med Eng Phys; 2016 Mar; 38(3):209-15. PubMed ID: 26726797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Replication of the range of native anterior cruciate ligament fiber length change behavior achieved by different grafts: measurement using computer-assisted navigation.
    Robinson J; Stanford FC; Kendoff D; Stüber V; Pearle AD
    Am J Sports Med; 2009 Jul; 37(7):1406-11. PubMed ID: 19369575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of ACL Strain in the MCL-Deficient and MCL-Reconstructed Knee During Simulated Landing in a Cadaveric Model.
    Mancini EJ; Kohen R; Esquivel AO; Cracchiolo AM; Lemos SE
    Am J Sports Med; 2017 Apr; 45(5):1090-1094. PubMed ID: 28165760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Function and strain of the anterolateral ligament part I: biomechanical analysis.
    Drews BH; Kessler O; Franz W; Dürselen L; Freutel M
    Knee Surg Sports Traumatol Arthrosc; 2017 Apr; 25(4):1132-1139. PubMed ID: 28258329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A musculoskeletal model of the knee for evaluating ligament forces during isometric contractions.
    Shelburne KB; Pandy MG
    J Biomech; 1997 Feb; 30(2):163-76. PubMed ID: 9001937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional finite element modelling of the human ACL: simulation of passive knee flexion with a stressed and stress-free ACL.
    Limbert G; Taylor M; Middleton J
    J Biomech; 2004 Nov; 37(11):1723-31. PubMed ID: 15388315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.