These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 11506792)

  • 1. Application of spherical and cylindrical wrapping algorithms in a musculoskeletal model of the upper limb.
    Charlton IW; Johnson GR
    J Biomech; 2001 Sep; 34(9):1209-16. PubMed ID: 11506792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global optimization method for combined spherical-cylindrical wrapping in musculoskeletal upper limb modelling.
    Audenaert A; Audenaert E
    Comput Methods Programs Biomed; 2008 Oct; 92(1):8-19. PubMed ID: 18606476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel approach to the prediction of musculotendon paths.
    Marsden SP; Swailes DC
    Proc Inst Mech Eng H; 2008 Jan; 222(1):51-61. PubMed ID: 18335718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The convex wrapping algorithm: a method for identifying muscle paths using the underlying bone mesh.
    Desailly E; Sardain P; Khouri N; Yepremian D; Lacouture P
    J Biomech; 2010 Sep; 43(13):2601-7. PubMed ID: 20627304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle moment-arms: a key element in muscle-force estimation.
    Ingram D; Engelhardt C; Farron A; Terrier A; Müllhaupt P
    Comput Methods Biomech Biomed Engin; 2015; 18(5):506-13. PubMed ID: 23998280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring anatomical muscle paths: a sheath-like solution for muscle routing in musculoskeletal computer models.
    Hammer M; Günther M; Haeufle DFB; Schmitt S
    Math Biosci; 2019 May; 311():68-81. PubMed ID: 30844381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Musculoskeletal model of the upper limb based on the visible human male dataset.
    Garner BA; Pandy MG
    Comput Methods Biomech Biomed Engin; 2001 Feb; 4(2):93-126. PubMed ID: 11264863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neck muscle paths and moment arms are significantly affected by wrapping surface parameters.
    Suderman BL; Krishnamoorthy B; Vasavada AN
    Comput Methods Biomech Biomed Engin; 2012; 15(7):735-44. PubMed ID: 21416413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probabilistic modeling of knee muscle moment arms: effects of methods, origin-insertion, and kinematic variability.
    Pal S; Langenderfer JE; Stowe JQ; Laz PJ; Petrella AJ; Rullkoetter PJ
    Ann Biomed Eng; 2007 Sep; 35(9):1632-42. PubMed ID: 17546504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The application of muscle wrapping to voxel-based finite element models of skeletal structures.
    Liu J; Shi J; Fitton LC; Phillips R; O'Higgins P; Fagan MJ
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):35-47. PubMed ID: 21308392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle moment arms and sensitivity analysis of a mouse hindlimb musculoskeletal model.
    Charles JP; Cappellari O; Spence AJ; Wells DJ; Hutchinson JR
    J Anat; 2016 Oct; 229(4):514-35. PubMed ID: 27173448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Algorithms for exact multi-object muscle wrapping and application to the deltoid muscle wrapping around the humerus.
    Marsden SP; Swailes DC; Johnson GR
    Proc Inst Mech Eng H; 2008 Oct; 222(7):1081-95. PubMed ID: 19024156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A three-dimensional musculoskeletal model of the chimpanzee (Pan troglodytes) pelvis and hind limb.
    O'Neill MC; Lee LF; Larson SG; Demes B; Stern JT; Umberger BR
    J Exp Biol; 2013 Oct; 216(Pt 19):3709-23. PubMed ID: 24006347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neck Muscle Moment Arms Obtained In-Vivo from MRI: Effect of Curved and Straight Modeled Paths.
    Suderman BL; Vasavada AN
    Ann Biomed Eng; 2017 Aug; 45(8):2009-2024. PubMed ID: 28397021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle wrapping on arbitrary meshes with the heat method.
    Zarifi O; Stavness I
    Comput Methods Biomech Biomed Engin; 2017 Feb; 20(2):119-129. PubMed ID: 27454151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subject-specific musculoskeletal model of the lower limb in a lying and standing position.
    Hausselle J; Assi A; El Helou A; Jolivet E; Pillet H; Dion E; Bonneau D; Skalli W
    Comput Methods Biomech Biomed Engin; 2014 Apr; 17(5):480-7. PubMed ID: 22731619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of muscle wrapping objects using simulated annealing.
    Gatti CJ; Hughes RE
    Ann Biomed Eng; 2009 Jul; 37(7):1342-7. PubMed ID: 19434495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling tendon excursions and moment arms of the finger flexors: anatomic fidelity versus function.
    Kociolek AM; Keir PJ
    J Biomech; 2011 Jul; 44(10):1967-73. PubMed ID: 21596382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 'Putting flesh back onto the bones?' Can we predict soft tissue properties from skeletal and fossil remains?
    Shaw C
    J Hum Evol; 2010 Nov; 59(5):484-92. PubMed ID: 20688357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated muscle wrapping using finite element contact detection.
    Favre P; Gerber C; Snedeker JG
    J Biomech; 2010 Jul; 43(10):1931-40. PubMed ID: 20434159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.