These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 11506859)

  • 1. Spatiotemporal maturation of the central and lateral N1 components to tones.
    Gomes H; Dunn M; Ritter W; Kurtzberg D; Brattson A; Kreuzer JA; Vaughan HG
    Brain Res Dev Brain Res; 2001 Aug; 129(2):147-55. PubMed ID: 11506859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topography of auditory evoked cortical potentials in children with severe language impairment: the N1 component.
    Uhlén IT; Borg E; Persson HE; Spens KE
    Electroencephalogr Clin Neurophysiol; 1996 May; 100(3):250-60. PubMed ID: 8681866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maturation of human central auditory system activity: evidence from multi-channel evoked potentials.
    Ponton CW; Eggermont JJ; Kwong B; Don M
    Clin Neurophysiol; 2000 Feb; 111(2):220-36. PubMed ID: 10680557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maturation of the cortical auditory evoked potential in infants and young children.
    Wunderlich JL; Cone-Wesson BK; Shepherd R
    Hear Res; 2006 Feb; 212(1-2):185-202. PubMed ID: 16459037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in evoked potentials during the active processing of sound location and motion.
    Richter N; Schröger E; Rübsamen R
    Neuropsychologia; 2013 Jun; 51(7):1204-14. PubMed ID: 23499852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental changes in P1 and N1 central auditory responses elicited by consonant-vowel syllables.
    Sharma A; Kraus N; McGee TJ; Nicol TG
    Electroencephalogr Clin Neurophysiol; 1997 Nov; 104(6):540-5. PubMed ID: 9402896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maturation of human central auditory system activity: separating auditory evoked potentials by dipole source modeling.
    Ponton C; Eggermont JJ; Khosla D; Kwong B; Don M
    Clin Neurophysiol; 2002 Mar; 113(3):407-20. PubMed ID: 11897541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cortical auditory evoked potential in aging: effects of stimulus intensity and noise.
    Kim JR; Ahn SY; Jeong SW; Kim LS; Park JS; Chung SH; Oh MK
    Otol Neurotol; 2012 Sep; 33(7):1105-12. PubMed ID: 22892802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topography of auditory evoked long-latency potentials in normal children, with particular reference to the N1 component.
    Tonnquist-Uhlén I; Borg E; Spens KE
    Electroencephalogr Clin Neurophysiol; 1995 Jul; 95(1):34-41. PubMed ID: 7621769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental evidence for modality-dependent P300 generators: a normative study.
    Johnson R
    Psychophysiology; 1989 Nov; 26(6):651-67. PubMed ID: 2629013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.
    Nikjeh DA; Lister JJ; Frisch SA
    Ear Hear; 2009 Aug; 30(4):432-46. PubMed ID: 19494778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental changes in refractoriness of the cortical auditory evoked potential.
    Gilley PM; Sharma A; Dorman M; Martin K
    Clin Neurophysiol; 2005 Mar; 116(3):648-57. PubMed ID: 15721079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maturation of cortical sound processing as indexed by event-related potentials.
    Ceponiene R; Rinne T; Näätänen R
    Clin Neurophysiol; 2002 Jun; 113(6):870-82. PubMed ID: 12048046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auditory N1 as a change-related automatic response.
    Nishihara M; Inui K; Motomura E; Otsuru N; Ushida T; Kakigi R
    Neurosci Res; 2011 Oct; 71(2):145-8. PubMed ID: 21787811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The development of the length of the temporal window of integration for rapidly presented auditory information as indexed by MMN.
    Wang W; Datta H; Sussman E
    Clin Neurophysiol; 2005 Jul; 116(7):1695-706. PubMed ID: 15905124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scalp- and sLORETA-derived loudness dependence of auditory evoked potentials (LDAEPs) in unmedicated depressed males and females and healthy controls.
    Jaworska N; Blier P; Fusee W; Knott V
    Clin Neurophysiol; 2012 Sep; 123(9):1769-78. PubMed ID: 22425485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical responses to speech sounds and their formants in normal infants: maturational sequence and spatiotemporal analysis.
    Novak GP; Kurtzberg D; Kreuzer JA; Vaughan HG
    Electroencephalogr Clin Neurophysiol; 1989 Oct; 73(4):295-305. PubMed ID: 2477216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auditory evoked potentials to spectro-temporal modulation of complex tones in normal subjects and patients with severe brain injury.
    Jones SJ; Vaz Pato M; Sprague L; Stokes M; Munday R; Haque N
    Brain; 2000 May; 123 ( Pt 5)():1007-16. PubMed ID: 10775545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. P300 in young and elderly subjects: auditory frequency and intensity effects.
    Vesco KK; Bone RC; Ryan JC; Polich J
    Electroencephalogr Clin Neurophysiol; 1993; 88(4):302-8. PubMed ID: 7688285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maturation of mismatch negativity: a scalp current density analysis.
    Martin BA; Shafer VL; Morr ML; Kreuzer JA; Kurtzberg D
    Ear Hear; 2003 Dec; 24(6):463-71. PubMed ID: 14663346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.