BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 11507088)

  • 21. Hsp90-binding immunophilins link p53 to dynein during p53 transport to the nucleus.
    Galigniana MD; Harrell JM; O'Hagen HM; Ljungman M; Pratt WB
    J Biol Chem; 2004 May; 279(21):22483-9. PubMed ID: 15004035
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contribution of two independent MDM2-binding domains in p14(ARF) to p53 stabilization.
    Lohrum MA; Ashcroft M; Kubbutat MH; Vousden KH
    Curr Biol; 2000 May; 10(9):539-42. PubMed ID: 10801444
    [TBL] [Abstract][Full Text] [Related]  

  • 23. p53-independent association between SV40 large T antigen and the major cytosolic heat shock protein, HSP90.
    Miyata Y; Yahara I
    Oncogene; 2000 Mar; 19(11):1477-84. PubMed ID: 10723140
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Epidermal growth factor receptors harboring kinase domain mutations associate with the heat shock protein 90 chaperone and are destabilized following exposure to geldanamycins.
    Shimamura T; Lowell AM; Engelman JA; Shapiro GI
    Cancer Res; 2005 Jul; 65(14):6401-8. PubMed ID: 16024644
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design of novel Geldanamycin analogue hsp90 alpha-inhibitor in silico for breast cancer therapy.
    Mahanta S; Pilla S; Paul S
    Med Hypotheses; 2013 Sep; 81(3):463-9. PubMed ID: 23860250
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nuclear exclusion of p53 in a subset of tumors requires MDM2 function.
    Lu W; Pochampally R; Chen L; Traidej M; Wang Y; Chen J
    Oncogene; 2000 Jan; 19(2):232-40. PubMed ID: 10645001
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of JNK, Mdm2 and p14(ARF) contribution to the regulation of mutant p53 stability.
    Buschmann T; Minamoto T; Wagle N; Fuchs SY; Adler V; Mai M; Ronai Z
    J Mol Biol; 2000 Jan; 295(4):1009-21. PubMed ID: 10656807
    [TBL] [Abstract][Full Text] [Related]  

  • 28. AQP2 Abundance is Regulated by the E3-Ligase CHIP Via HSP70.
    Centrone M; Ranieri M; Di Mise A; Berlingerio SP; Russo A; Deen PMT; Staub O; Valenti G; Tamma G
    Cell Physiol Biochem; 2017; 44(2):515-531. PubMed ID: 29145196
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ErbB2 degradation mediated by the co-chaperone protein CHIP.
    Zhou P; Fernandes N; Dodge IL; Reddi AL; Rao N; Safran H; DiPetrillo TA; Wazer DE; Band V; Band H
    J Biol Chem; 2003 Apr; 278(16):13829-37. PubMed ID: 12574167
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CAIR-1/BAG-3 abrogates heat shock protein-70 chaperone complex-mediated protein degradation: accumulation of poly-ubiquitinated Hsp90 client proteins.
    Doong H; Rizzo K; Fang S; Kulpa V; Weissman AM; Kohn EC
    J Biol Chem; 2003 Aug; 278(31):28490-500. PubMed ID: 12750378
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation.
    Wang C; Ivanov A; Chen L; Fredericks WJ; Seto E; Rauscher FJ; Chen J
    EMBO J; 2005 Sep; 24(18):3279-90. PubMed ID: 16107876
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Repression of hsp90beta gene by p53 in UV irradiation-induced apoptosis of Jurkat cells.
    Zhang Y; Wang JS; Chen LL; Zhang Y; Cheng XK; Heng FY; Wu NH; Shen YF
    J Biol Chem; 2004 Oct; 279(41):42545-51. PubMed ID: 15284248
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mdm2 binding to a conformationally sensitive domain on p53 can be modulated by RNA.
    Burch LR; Midgley CA; Currie RA; Lane DP; Hupp TR
    FEBS Lett; 2000 Apr; 472(1):93-8. PubMed ID: 10781812
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential effects of Hsp90 inhibition on protein kinases regulating signal transduction pathways required for myoblast differentiation.
    Yun BG; Matts RL
    Exp Cell Res; 2005 Jul; 307(1):212-23. PubMed ID: 15922741
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53.
    Zhang Y; Xiong Y
    Mol Cell; 1999 May; 3(5):579-91. PubMed ID: 10360174
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Effect of HSP90 function inhibited on the telomerase and P53 mutant in breast cancer cells].
    Li X; Deng HY
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2008 Mar; 39(2):181-3. PubMed ID: 18630678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oligomerization is required for p53 to be efficiently ubiquitinated by MDM2.
    Maki CG
    J Biol Chem; 1999 Jun; 274(23):16531-5. PubMed ID: 10347217
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53.
    Buschmann T; Fuchs SY; Lee CG; Pan ZQ; Ronai Z
    Cell; 2000 Jun; 101(7):753-62. PubMed ID: 10892746
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MdmX binding to ARF affects Mdm2 protein stability and p53 transactivation.
    Jackson MW; Lindstrom MS; Berberich SJ
    J Biol Chem; 2001 Jul; 276(27):25336-41. PubMed ID: 11297540
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular mechanism of mutant p53 stabilization: the role of HSP70 and MDM2.
    Wiech M; Olszewski MB; Tracz-Gaszewska Z; Wawrzynow B; Zylicz M; Zylicz A
    PLoS One; 2012; 7(12):e51426. PubMed ID: 23251530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.