BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 11507088)

  • 41. Dephosphorylated hypoxia-inducible factor 1alpha as a mediator of p53-dependent apoptosis during hypoxia.
    Suzuki H; Tomida A; Tsuruo T
    Oncogene; 2001 Sep; 20(41):5779-88. PubMed ID: 11593383
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cellular stress and DNA damage invoke temporally distinct Mdm2, p53 and PML complexes and damage-specific nuclear relocalization.
    Kurki S; Latonen L; Laiho M
    J Cell Sci; 2003 Oct; 116(Pt 19):3917-25. PubMed ID: 12915590
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hsp70- and Hsp90-Mediated Regulation of the Conformation of p53 DNA Binding Domain and p53 Cancer Variants.
    Boysen M; Kityk R; Mayer MP
    Mol Cell; 2019 May; 74(4):831-843.e4. PubMed ID: 31027880
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hdmx stabilizes Mdm2 and p53.
    Stad R; Ramos YF; Little N; Grivell S; Attema J; van Der Eb AJ; Jochemsen AG
    J Biol Chem; 2000 Sep; 275(36):28039-44. PubMed ID: 10827196
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mdm2 ligase dead mutants did not act in a dominant negative manner to re-activate p53, but promoted tumor cell growth.
    Swaroop M; Sun Y
    Anticancer Res; 2003; 23(4):3167-74. PubMed ID: 12926050
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bax loss impairs Myc-induced apoptosis and circumvents the selection of p53 mutations during Myc-mediated lymphomagenesis.
    Eischen CM; Roussel MF; Korsmeyer SJ; Cleveland JL
    Mol Cell Biol; 2001 Nov; 21(22):7653-62. PubMed ID: 11604501
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interaction of the PAS B domain with HSP90 accelerates hypoxia-inducible factor-1alpha stabilization.
    Katschinski DM; Le L; Schindler SG; Thomas T; Voss AK; Wenger RH
    Cell Physiol Biochem; 2004; 14(4-6):351-60. PubMed ID: 15319539
    [TBL] [Abstract][Full Text] [Related]  

  • 48. HMG-CoA reductase inhibitors, statins, induce phosphorylation of Mdm2 and attenuate the p53 response to DNA damage.
    Pääjärvi G; Roudier E; Crisby M; Högberg J; Stenius U
    FASEB J; 2005 Mar; 19(3):476-8. PubMed ID: 15625077
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The heat shock protein 90-binding geldanamycin inhibits cancer cell proliferation, down-regulates oncoproteins, and inhibits epidermal growth factor-induced invasion in thyroid cancer cell lines.
    Park JW; Yeh MW; Wong MG; Lobo M; Hyun WC; Duh QY; Clark OH
    J Clin Endocrinol Metab; 2003 Jul; 88(7):3346-53. PubMed ID: 12843186
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Myc-ARF (alternate reading frame) interaction inhibits the functions of Myc.
    Datta A; Nag A; Pan W; Hay N; Gartel AL; Colamonici O; Mori Y; Raychaudhuri P
    J Biol Chem; 2004 Aug; 279(35):36698-707. PubMed ID: 15199070
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin.
    Schulte TW; Neckers LM
    Cancer Chemother Pharmacol; 1998; 42(4):273-9. PubMed ID: 9744771
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Overexpression of Mdm2 and MdmX fusion proteins alters p53 mediated transactivation, ubiquitination, and degradation.
    Ghosh M; Huang K; Berberich SJ
    Biochemistry; 2003 Mar; 42(8):2291-9. PubMed ID: 12600196
    [TBL] [Abstract][Full Text] [Related]  

  • 53. P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2.
    Tao W; Levine AJ
    Proc Natl Acad Sci U S A; 1999 Jun; 96(12):6937-41. PubMed ID: 10359817
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The hsp90-binding antibiotic geldanamycin decreases Raf levels and epidermal growth factor signaling without disrupting formation of signaling complexes or reducing the specific enzymatic activity of Raf kinase.
    Stancato LF; Silverstein AM; Owens-Grillo JK; Chow YH; Jove R; Pratt WB
    J Biol Chem; 1997 Feb; 272(7):4013-20. PubMed ID: 9020108
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mdm2: keeping p53 under control.
    Piette J; Neel H; Maréchal V
    Oncogene; 1997 Aug; 15(9):1001-10. PubMed ID: 9285554
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An N-terminal p14ARF peptide blocks Mdm2-dependent ubiquitination in vitro and can activate p53 in vivo.
    Midgley CA; Desterro JM; Saville MK; Howard S; Sparks A; Hay RT; Lane DP
    Oncogene; 2000 May; 19(19):2312-23. PubMed ID: 10822382
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The heat shock protein 90 antagonist geldanamycin alters chaperone association with p210bcr-abl and v-src proteins before their degradation by the proteasome.
    An WG; Schulte TW; Neckers LM
    Cell Growth Differ; 2000 Jul; 11(7):355-60. PubMed ID: 10939589
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inhibition of p53 degradation by Mdm2 acetylation.
    Wang X; Taplick J; Geva N; Oren M
    FEBS Lett; 2004 Mar; 561(1-3):195-201. PubMed ID: 15013777
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reactivation of p53: from peptides to small molecules.
    Brown CJ; Cheok CF; Verma CS; Lane DP
    Trends Pharmacol Sci; 2011 Jan; 32(1):53-62. PubMed ID: 21145600
    [TBL] [Abstract][Full Text] [Related]  

  • 60. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways.
    Zhang Y; Xiong Y; Yarbrough WG
    Cell; 1998 Mar; 92(6):725-34. PubMed ID: 9529249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.