BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 11507169)

  • 1. Aldosterone mediates the changes in hexose transport induced by low sodium intake in chicken distal intestine.
    Garriga C; Planas JM; Moretó M
    J Physiol; 2001 Aug; 535(Pt 1):197-205. PubMed ID: 11507169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of resalination on intestinal glucose transport in chickens adapted to low Na+ intakes.
    Garriga C; Moretó M; Planas JM
    Exp Physiol; 2000 Jul; 85(4):371-8. PubMed ID: 10918076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hexose transport in the apical and basolateral membranes of enterocytes in chickens adapted to high and low NaCl intakes.
    Garriga C; Moretó M; Planas JM
    J Physiol; 1999 Jan; 514 ( Pt 1)(Pt 1):189-99. PubMed ID: 9831726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of SGLT1 expression in response to Na(+) intake.
    Barfull A; Garriga C; Tauler A; Planas JM
    Am J Physiol Regul Integr Comp Physiol; 2002 Mar; 282(3):R738-43. PubMed ID: 11832394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hexose transport across the apical and basolateral membrane of enterocytes from different regions of the chicken intestine.
    Ferrer R; Gil M; Moretó M; Oliveras M; Planas JM
    Pflugers Arch; 1994 Jan; 426(1-2):83-8. PubMed ID: 8146029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Na+-dependent D-mannose transporter in the apical membrane of chicken small intestine epithelial cells.
    Cano M; Calonge ML; Peral MJ; Ilundáin AA
    Pflugers Arch; 2001 Feb; 441(5):686-91. PubMed ID: 11294251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hexose accumulation by enterocytes from the jejunum and rectum of chickens adapted to high and low NaCl intake.
    Jaso MJ; Vial M; Moretó M
    Pflugers Arch; 1995 Feb; 429(4):511-6. PubMed ID: 7617441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In birds, NHE2 is major brush-border Na+/H+ exchanger in colon and is increased by a low-NaCl diet.
    Donowitz M; De La Horra C; Calonge ML; Wood IS; Dyer J; Gribble SM; De Medina FS; Tse CM; Shirazi-Beechey SP; Ilundain AA
    Am J Physiol; 1998 Jun; 274(6):R1659-69. PubMed ID: 9608021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of Na+-D-glucose cotransporter in brush-border membrane of the chicken intestine.
    Garriga C; Rovira N; Moretó M; Planas JM
    Am J Physiol; 1999 Feb; 276(2):R627-31. PubMed ID: 9950947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of adrenal steroids on Na transport in the lower intestine (coprodeum) of the hen.
    Clauss W; Dürr JE; Guth D; Skadhauge E
    J Membr Biol; 1987; 96(2):141-52. PubMed ID: 3599065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose transporters and enzymes related to glucose synthesis in small intestinal mucosa of mid-lactation dairy cows fed 2 levels of starch.
    Lohrenz AK; Duske K; Schönhusen U; Losand B; Seyfert HM; Metges CC; Hammon HM
    J Dairy Sci; 2011 Sep; 94(9):4546-55. PubMed ID: 21854927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regional differences in transport, lipid composition, and fluidity of apical membranes of small intestine of chicken.
    Garriga C; Vázquez CM; Ruiz-Gutiérrez V; Planas JM
    Poult Sci; 2002 Apr; 81(4):537-45. PubMed ID: 11989754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of hexose uptake by the small and large intestine of the chicken.
    Amat C; Planas JM; Moretó M
    Am J Physiol; 1996 Oct; 271(4 Pt 2):R1085-9. PubMed ID: 8898004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of dehydration on apical Na+-H+ exchange activity and Na+-dependent sugar transport in brush-border membrane vesicles isolated from chick intestine.
    De la Horra MC; Calonge ML; Ilundáin AA
    Pflugers Arch; 1998 Jun; 436(1):112-6. PubMed ID: 9560454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the D-glucose/Na+ cotransport system in the intestinal brush-border membrane by using the specific substrate, methyl alpha-D-glucopyranoside.
    Brot-Laroche E; Supplisson S; Delhomme B; Alcalde AI; Alvarado F
    Biochim Biophys Acta; 1987 Nov; 904(1):71-80. PubMed ID: 3663668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hormonal regulation of chicken intestinal NHE and SGLT-1 activities.
    De La Horra MC; Cano M; Peral MJ; Calonge ML; Ilundáin AA
    Am J Physiol Regul Integr Comp Physiol; 2001 Mar; 280(3):R655-60. PubMed ID: 11171642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic characterization of apical D-fructose transport in chicken jejunum.
    Garriga C; Barfull A; Planas JM
    J Membr Biol; 2004 Jan; 197(1):71-6. PubMed ID: 15014919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partial sequence and expression of the gene for and activity of the sodium glucose transporter in the small intestine of fed, starved and refed chickens.
    Gal-Garber O; Mabjeesh SJ; Sklan D; Uni Z
    J Nutr; 2000 Sep; 130(9):2174-9. PubMed ID: 10958809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced glucose absorption in the rat small intestine following repeated doses of 5-fluorouracil.
    Tomimatsu T; Horie T
    Chem Biol Interact; 2005 Aug; 155(3):129-39. PubMed ID: 15996645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in neutral amino acid and glucose transport between brush border and basolateral plasma membrane of intestinal epithelial cells.
    Hopfer U; Sigrist-Nelson K; Ammann E; Murer H
    J Cell Physiol; 1976 Dec; 89(4):805-10. PubMed ID: 137908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.