These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 11507760)
1. Proton mobility and main fragmentation pathways of protonated lysylglycine. Csonka IP; Paizs B; Lendvay G; Suhai S Rapid Commun Mass Spectrom; 2001; 15(16):1457-72. PubMed ID: 11507760 [TBL] [Abstract][Full Text] [Related]
2. Fragmentation pathways of protonated peptides. Paizs B; Suhai S Mass Spectrom Rev; 2005; 24(4):508-48. PubMed ID: 15389847 [TBL] [Abstract][Full Text] [Related]
3. Proton mobility in protonated peptides: a joint molecular orbital and RRKM study. Csonka IP; Paizs B; Lendvay G; Suhai S Rapid Commun Mass Spectrom; 2000; 14(6):417-31. PubMed ID: 10717650 [TBL] [Abstract][Full Text] [Related]
4. Gas-phase proton-transfer pathways in protonated histidylglycine. Macdonald BI; Thachuk M Rapid Commun Mass Spectrom; 2008 Sep; 22(18):2946-54. PubMed ID: 18729239 [TBL] [Abstract][Full Text] [Related]
5. Energetics and dynamics of the fragmentation reactions of protonated peptides containing methionine sulfoxide or aspartic acid via energy- and time-resolved surface induced dissociation. Lioe H; Laskin J; Reid GE; O'Hair RA J Phys Chem A; 2007 Oct; 111(42):10580-8. PubMed ID: 17914758 [TBL] [Abstract][Full Text] [Related]
6. Infrared spectroscopy and theoretical studies on gas-phase protonated leu-enkephalin and its fragments: direct experimental evidence for the mobile proton. Polfer NC; Oomens J; Suhai S; Paizs B J Am Chem Soc; 2007 May; 129(18):5887-97. PubMed ID: 17428052 [TBL] [Abstract][Full Text] [Related]
7. Protonated urea collision-induced dissociation. Comparison of experiments and chemical dynamics simulations. Spezia R; Salpin JY; Gaigeot MP; Hase WL; Song K J Phys Chem A; 2009 Dec; 113(50):13853-62. PubMed ID: 19886650 [TBL] [Abstract][Full Text] [Related]
8. Effect of the basic residue on the energetics, dynamics, and mechanisms of gas-phase fragmentation of protonated peptides. Laskin J; Yang Z; Song T; Lam C; Chu IK J Am Chem Soc; 2010 Nov; 132(45):16006-16. PubMed ID: 20977217 [TBL] [Abstract][Full Text] [Related]
9. Modeling of the gas-phase ion chemistry of protonated arginine. Csonka IP; Paizs B; Suhai S J Mass Spectrom; 2004 Sep; 39(9):1025-35. PubMed ID: 15386755 [TBL] [Abstract][Full Text] [Related]
10. Sequence-scrambling fragmentation pathways of protonated peptides. Bleiholder C; Osburn S; Williams TD; Suhai S; Van Stipdonk M; Harrison AG; Paizs B J Am Chem Soc; 2008 Dec; 130(52):17774-89. PubMed ID: 19055406 [TBL] [Abstract][Full Text] [Related]
11. Proton mobility in protonated glycylglycine and N-formylglycylglycinamide: a combined quantum chemical and RKKM study. Paizs B; Csonka IP; Lendvay G; Suhai S Rapid Commun Mass Spectrom; 2001; 15(8):637-50. PubMed ID: 11312515 [TBL] [Abstract][Full Text] [Related]
12. Proton-driven amide bond-cleavage pathways of gas-phase peptide ions lacking mobile protons. Bythell BJ; Suhai S; Somogyi A; Paizs B J Am Chem Soc; 2009 Oct; 131(39):14057-65. PubMed ID: 19746933 [TBL] [Abstract][Full Text] [Related]
13. Fragmentation reactions of protonated peptides containing glutamine or glutamic acid. Harrison AG J Mass Spectrom; 2003 Feb; 38(2):174-87. PubMed ID: 12577284 [TBL] [Abstract][Full Text] [Related]
14. An investigation of protonation sites and conformations of protonated amino acids by IRMPD spectroscopy. Wu R; McMahon TB Chemphyschem; 2008 Dec; 9(18):2826-35. PubMed ID: 18846594 [TBL] [Abstract][Full Text] [Related]
15. Formation of iminium ions by fragmentation of a2 ions. Harrison AG; Young AB; Schnoelzer M; Paizs B Rapid Commun Mass Spectrom; 2004; 18(14):1635-40. PubMed ID: 15282790 [TBL] [Abstract][Full Text] [Related]
16. Combined quantum chemical and RRKM modeling of the main fragmentation pathways of protonated GGG. II. Formation of b(2), y(1), and y(2) ions. Paizs B; Suhai S Rapid Commun Mass Spectrom; 2002; 16(5):375-89. PubMed ID: 11857721 [TBL] [Abstract][Full Text] [Related]
17. Polyglycine conformational analysis: calculated vs experimental gas-phase basicities and proton affinities. Chung-Phillips A J Phys Chem A; 2005 Jul; 109(26):5917-32. PubMed ID: 16833926 [TBL] [Abstract][Full Text] [Related]
18. Influence of the charge state on the structures and interactions of vancomycin antibiotics with cell-wall analogue peptides: experimental and theoretical studies. Yang Z; Vorpagel ER; Laskin J Chemistry; 2009; 15(9):2081-90. PubMed ID: 19156658 [TBL] [Abstract][Full Text] [Related]
19. Electron transfer to protonated beta-alanine N-methylamide in the gas phase: an experimental and computational study of dissociation energetics and mechanisms. Yao C; Syrstad EA; Turecek F J Phys Chem A; 2007 May; 111(20):4167-80. PubMed ID: 17455922 [TBL] [Abstract][Full Text] [Related]
20. A unique approach to the mobile proton model: influence of charge distribution on peptide fragmentation. Sun F; Liu R; Zong W; Tian Y; Wang M; Zhang P J Phys Chem B; 2010 May; 114(19):6350-3. PubMed ID: 20415484 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]