These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 11508403)

  • 1. Classroom evaluation of the Arlyn Arm robotic workstation.
    Eberhardt SP; Osborne J; Rahman T
    Assist Technol; 2000; 12(2):132-43. PubMed ID: 11508403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of a robotic workstation for the disabled.
    Hillman M; Jepson J
    J Biomed Eng; 1992 May; 14(3):187-92. PubMed ID: 1534128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a robot arm and workstation for the disabled.
    Hillman MR; Pullin GM; Gammie AR; Stammers CW; Orpwood RD
    J Biomed Eng; 1990 May; 12(3):199-204. PubMed ID: 2348707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robotics, assistive technology, and occupational therapy management to improve upper limb function in pediatric neuromuscular diseases.
    Rahman T; Basante J; Alexander M
    Phys Med Rehabil Clin N Am; 2012 Aug; 23(3):701-17. PubMed ID: 22938883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and testing of a functional arm orthosis in patients with neuromuscular diseases.
    Rahman T; Sample W; Seliktar R; Scavina MT; Clark AL; Moran K; Alexander MA
    IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):244-51. PubMed ID: 17601194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A body-powered functional upper limb orthosis.
    Rahman T; Sample W; Seliktar R; Alexander M; Scavina M
    J Rehabil Res Dev; 2000; 37(6):675-80. PubMed ID: 11321003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. School-based use of a robotic arm system by children with disabilities.
    Cook AM; Bentz B; Harbottle N; Lynch C; Miller B
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):452-60. PubMed ID: 16425826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a graphic interface to control a robotic grasping arm: a multicenter study.
    Laffont I; Biard N; Chalubert G; Delahoche L; Marhic B; Boyer FC; Leroux C
    Arch Phys Med Rehabil; 2009 Oct; 90(10):1740-8. PubMed ID: 19801065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a robotic device for facilitating learning by children who have severe disabilities.
    Cook AM; Meng MQ; Gu JJ; Howery K
    IEEE Trans Neural Syst Rehabil Eng; 2002 Sep; 10(3):178-87. PubMed ID: 12503783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. User Evaluation of a Dynamic Arm Orthosis for People With Neuromuscular Disorders.
    Gunn M; Shank TM; Eppes M; Hossain J; Rahman T
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1277-1283. PubMed ID: 28055882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved efficiency with a wheelchair propelled by the legs using voluntary activity or electric stimulation.
    Stein RB; Chong SL; James KB; Bell GJ
    Arch Phys Med Rehabil; 2001 Sep; 82(9):1198-203. PubMed ID: 11552191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring user acceptance of a robotic arm: an aesthetic orientation.
    Apostolos MK
    J Am Paraplegia Soc; 1985 Jul; 8(3):51-4. PubMed ID: 3842982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The parapodium: an orthotic device for neuromuscular disorders.
    Motloch W
    Artif Limbs; 1971; 15(2):36-47. PubMed ID: 5135224
    [No Abstract]   [Full Text] [Related]  

  • 14. Applying robotic technology to aid people with severe disabilities.
    Regalbuto M; Krouskop T; Cheatham J
    Assist Technol; 1992; 4(2):87-94. PubMed ID: 10171660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Daily Life Benefits and Usage Characteristics of Dynamic Arm Supports in Subjects with Neuromuscular Disorders.
    Essers J; Murgia A; Peters A; Meijer K
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32872138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the JACO robotic arm: clinico-economic study for powered wheelchair users with upper-extremity disabilities.
    Maheu V; Frappier J; Archambault PS; Routhier F
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975397. PubMed ID: 22275600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robotic total thyroidectomy with modified radical neck dissection via unilateral retroauricular approach.
    Byeon HK; Holsinger FC; Tufano RP; Chung HJ; Kim WS; Koh YW; Choi EC
    Ann Surg Oncol; 2014 Nov; 21(12):3872-5. PubMed ID: 25227305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Whole-arm tactile sensing for beneficial and acceptable contact during robotic assistance.
    Grice PM; Killpack MD; Jain A; Vaish S; Hawke J; Kemp CC
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650464. PubMed ID: 24187281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent trends in the development and evaluation of assistive robotic manipulation devices.
    Allin S; Eckel E; Markham H; Brewer BR
    Phys Med Rehabil Clin N Am; 2010 Feb; 21(1):59-77. PubMed ID: 19951778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A process for developing community consensus regarding the diagnosis and management of attention-deficit/hyperactivity disorder.
    Foy JM; Earls MF
    Pediatrics; 2005 Jan; 115(1):e97-104. PubMed ID: 15629972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.