These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 11508852)

  • 1. Old iron, young copper: from Mars to Venus.
    Crichton RR; Pierre JL
    Biometals; 2001 Jun; 14(2):99-112. PubMed ID: 11508852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charting the travels of copper in eukaryotes from yeast to mammals.
    Nevitt T; Ohrvik H; Thiele DJ
    Biochim Biophys Acta; 2012 Sep; 1823(9):1580-93. PubMed ID: 22387373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yeast, a model organism for iron and copper metabolism studies.
    De Freitas J; Wintz H; Kim JH; Poynton H; Fox T; Vulpe C
    Biometals; 2003 Mar; 16(1):185-97. PubMed ID: 12572678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High density array screening to identify the genetic requirements for transition metal tolerance in Saccharomyces cerevisiae.
    Bleackley MR; Young BP; Loewen CJ; MacGillivray RT
    Metallomics; 2011 Feb; 3(2):195-205. PubMed ID: 21212869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms for copper acquisition, distribution and regulation.
    Kim BE; Nevitt T; Thiele DJ
    Nat Chem Biol; 2008 Mar; 4(3):176-85. PubMed ID: 18277979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Toxicologic importance of iron and copper atoms and their relation to reactive oxygen metabolites].
    Duracková Z
    Bratisl Lek Listy; 1998 Jul; 99(7):351-8. PubMed ID: 9748724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of ferritin and redox-active transition metals in normal and cataractous human lenses.
    Garner B; Roberg K; Qian M; Eaton JW; Truscott RJ
    Exp Eye Res; 2000 Dec; 71(6):599-607. PubMed ID: 11095912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yeast frataxin sequentially chaperones and stores iron by coupling protein assembly with iron oxidation.
    Park S; Gakh O; O'Neill HA; Mangravita A; Nichol H; Ferreira GC; Isaya G
    J Biol Chem; 2003 Aug; 278(33):31340-51. PubMed ID: 12732649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of post-transcriptional modulators of metalloproteins in response to metal deficiencies.
    Perea-García A; Puig S; Peñarrubia L
    J Exp Bot; 2022 Mar; 73(6):1735-1750. PubMed ID: 34849747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-ion regulation of gene expression in yeast.
    Winge DR; Jensen LT; Srinivasan C
    Curr Opin Chem Biol; 1998 Apr; 2(2):216-21. PubMed ID: 9667925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bis(mu-oxo)dimetal "diamond" cores in copper and iron complexes relevant to biocatalysis.
    Que L; Tolman WB
    Angew Chem Int Ed Engl; 2002 Apr; 41(7):1114-37. PubMed ID: 12491240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aging results in iron accumulations in the non-human primate choroid of the eye without an associated increase in zinc, copper or sulphur.
    Ugarte M; Geraki K; Jeffery G
    Biometals; 2018 Dec; 31(6):1061-1073. PubMed ID: 30306383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fe(II)/Cu(II) interaction on goethite stimulated by an iron-reducing bacteria Aeromonas Hydrophila HS01 under anaerobic conditions.
    Tao L; Zhu ZK; Li FB; Wang SL
    Chemosphere; 2017 Nov; 187():43-51. PubMed ID: 28834771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of dioxygen by enzymes containing copper.
    Bento I; Carrondo MA; Lindley PF
    J Biol Inorg Chem; 2006 Jul; 11(5):539-47. PubMed ID: 16791638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 'Venus trapped, Mars transits': Cu and Fe redox chemistry, cellular topography and in situ ligand binding in terrestrial isopod hepatopancreas.
    Kille P; Morgan AJ; Powell K; Mosselmans JF; Hart D; Gunning P; Hayes A; Scarborough D; McDonald I; Charnock JM
    Open Biol; 2016 Mar; 6(3):. PubMed ID: 26935951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution structure of the Cu(I) and apo forms of the yeast metallochaperone, Atx1.
    Arnesano F; Banci L; Bertini I; Huffman DL; O'Halloran TV
    Biochemistry; 2001 Feb; 40(6):1528-39. PubMed ID: 11327811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper chaperones: personal escorts for metal ions.
    Field LS; Luk E; Culotta VC
    J Bioenerg Biomembr; 2002 Oct; 34(5):373-9. PubMed ID: 12539964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of copper and iron homeostasis by metal chelators: a possible chemotherapy for Alzheimer's disease.
    Robert A; Liu Y; Nguyen M; Meunier B
    Acc Chem Res; 2015 May; 48(5):1332-9. PubMed ID: 25946460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron metabolism in eukaryotes: Mars and Venus at it again.
    Kaplan J; O'Halloran TV
    Science; 1996 Mar; 271(5255):1510-2. PubMed ID: 8599104
    [No Abstract]   [Full Text] [Related]  

  • 20. Reaction Mechanisms of Metals with Hydrogen Sulfide and Thiols in Model Wine. Part 2: Iron- and Copper-Catalyzed Oxidation.
    Kreitman GY; Danilewicz JC; Jeffery DW; Elias RJ
    J Agric Food Chem; 2016 May; 64(20):4105-13. PubMed ID: 27133088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.