These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 11509352)
1. Carbohydrate-protein recognition: molecular dynamics simulations and free energy analysis of oligosaccharide binding to concanavalin A. Bryce RA; Hillier IH; Naismith JH Biophys J; 2001 Sep; 81(3):1373-88. PubMed ID: 11509352 [TBL] [Abstract][Full Text] [Related]
2. Concanavalin A distorts the beta-GlcNAc-(1-->2)-Man linkage of beta-GlcNAc-(1-->2)-alpha-Man-(1-->3)-[beta-GlcNAc-(1-->2)-alpha-Man- (1-->6)]-Man upon binding. Moothoo DN; Naismith JH Glycobiology; 1998 Feb; 8(2):173-81. PubMed ID: 9451027 [TBL] [Abstract][Full Text] [Related]
3. Molecular dynamics simulations of oligosaccharides and their conformation in the crystal structure of lectin-carbohydrate complex: importance of the torsion angle psi for the orientation of alpha 1,6-arm. Qasba PK; Balaji PV; Rao VS Glycobiology; 1994 Dec; 4(6):805-15. PubMed ID: 7734844 [TBL] [Abstract][Full Text] [Related]
4. Calorimetric analysis of the binding of lectins with overlapping carbohydrate-binding ligand specificities. Chervenak MC; Toone EJ Biochemistry; 1995 Apr; 34(16):5685-95. PubMed ID: 7727428 [TBL] [Abstract][Full Text] [Related]
5. Structural basis for the recognition of complex-type biantennary oligosaccharides by Pterocarpus angolensis lectin. Buts L; Garcia-Pino A; Imberty A; Amiot N; Boons GJ; Beeckmans S; Versées W; Wyns L; Loris R FEBS J; 2006 Jun; 273(11):2407-20. PubMed ID: 16704415 [TBL] [Abstract][Full Text] [Related]
6. Conformational studies on the selectin and natural killer cell receptor ligands sulfo- and sialyl-lacto-N-fucopentaoses (SuLNFPII and SLNFPII) using NMR spectroscopy and molecular dynamics simulations. Comparisons with the nonacidic parent molecule LNFPII. Kogelberg H; Frenkiel TA; Homans SW; Lubineau A; Feizi T Biochemistry; 1996 Feb; 35(6):1954-64. PubMed ID: 8639679 [TBL] [Abstract][Full Text] [Related]
7. Thermodynamics of lectin-carbohydrate interactions. Binding of the core trimannoside of asparagine-linked carbohydrates and deoxy analogs to concanavalin A. Gupta D; Dam TK; Oscarson S; Brewer CF J Biol Chem; 1997 Mar; 272(10):6388-92. PubMed ID: 9045661 [TBL] [Abstract][Full Text] [Related]
8. Thermodynamics of lectin-carbohydrate interactions. Titration microcalorimetry measurements of the binding of N-linked carbohydrates and ovalbumin to concanavalin A. Mandal DK; Kishore N; Brewer CF Biochemistry; 1994 Feb; 33(5):1149-56. PubMed ID: 8110746 [TBL] [Abstract][Full Text] [Related]
9. The effect of water displacement on binding thermodynamics: concanavalin A. Li Z; Lazaridis T J Phys Chem B; 2005 Jan; 109(1):662-70. PubMed ID: 16851059 [TBL] [Abstract][Full Text] [Related]
10. A comparison of the fine saccharide-binding specificity of Dioclea grandiflora lectin and concanavalin A. Gupta D; Oscarson S; Raju TS; Stanley P; Toone EJ; Brewer CF Eur J Biochem; 1996 Dec; 242(2):320-6. PubMed ID: 8973650 [TBL] [Abstract][Full Text] [Related]
11. Conformations, dynamics and interactions of di-, tri- and pentamannoside with mannose binding lectin: a molecular dynamics study. Mazumder P; Mukhopadhyay C Carbohydr Res; 2012 Feb; 349():59-72. PubMed ID: 22236774 [TBL] [Abstract][Full Text] [Related]
12. Differential solvation of "core" trimannoside complexes of the Dioclea grandiflora lectin and concanavalin A detected by primary solvent isotope effects in isothermal titration microcalorimetry. Dam TK; Oscarson S; Sacchettini JC; Brewer CF J Biol Chem; 1998 Dec; 273(49):32826-32. PubMed ID: 9830029 [TBL] [Abstract][Full Text] [Related]
13. Molecular modelling of protein-carbohydrate interactions. Understanding the specificities of two legume lectins towards oligosaccharides. Imberty A; Pérez S Glycobiology; 1994 Jun; 4(3):351-66. PubMed ID: 7949661 [TBL] [Abstract][Full Text] [Related]
14. Molecular modelling of protein-carbohydrate interactions. Docking of monosaccharides in the binding site of concanavalin A. Imberty A; Hardman KD; Carver JP; Pérez S Glycobiology; 1991 Dec; 1(6):631-42. PubMed ID: 1822243 [TBL] [Abstract][Full Text] [Related]
15. Thermodynamics of binding of the core trimannoside of asparagine-linked carbohydrates and deoxy analogs to Dioclea grandiflora lectin. Dam TK; Oscarson S; Brewer CF J Biol Chem; 1998 Dec; 273(49):32812-7. PubMed ID: 9830027 [TBL] [Abstract][Full Text] [Related]
17. Oligosaccharide preferences of beta1,4-galactosyltransferase-I: crystal structures of Met340His mutant of human beta1,4-galactosyltransferase-I with a pentasaccharide and trisaccharides of the N-glycan moiety. Ramasamy V; Ramakrishnan B; Boeggeman E; Ratner DM; Seeberger PH; Qasba PK J Mol Biol; 2005 Oct; 353(1):53-67. PubMed ID: 16157350 [TBL] [Abstract][Full Text] [Related]
18. Binding sub-site dissection of a carbohydrate-binding module reveals the contribution of entropy to oligosaccharide recognition at "non-primary" binding subsites. Lammerts van Bueren A; Boraston AB J Mol Biol; 2004 Jul; 340(4):869-79. PubMed ID: 15223327 [TBL] [Abstract][Full Text] [Related]
19. Binding of multivalent carbohydrates to concanavalin A and Dioclea grandiflora lectin. Thermodynamic analysis of the "multivalency effect". Dam TK; Roy R; Das SK; Oscarson S; Brewer CF J Biol Chem; 2000 May; 275(19):14223-30. PubMed ID: 10799500 [TBL] [Abstract][Full Text] [Related]
20. Molecular modeling and NMR studies of benzyl substituted mannosyl trisaccharide binding to two mannose-specific lectins: Allium sativam agglutinin I and Concanavalin A. Mazumder P; Mukhopadhyay C Biopolymers; 2010 Nov; 93(11):952-67. PubMed ID: 20564057 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]