BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 11509375)

  • 1. The Fe(2+)-His(F8) Raman band shape of deoxymyoglobin reveals taxonomic conformational substates of the proximal linkage.
    Schott J; Dreybrodt W; Schweitzer-Stenner R
    Biophys J; 2001 Sep; 81(3):1624-31. PubMed ID: 11509375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal fluctuations between conformational substates of the Fe(2+)-HisF8 linkage in deoxymyoglobin probed by the Raman active Fe-N epsilon (HisF8) stretching vibration.
    Gilch H; Dreybrodt W; Schweitzer-Stenner R
    Biophys J; 1995 Jul; 69(1):214-27. PubMed ID: 7669899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural heterogeneity of the Fe(2+)-N epsilon (HisF8) bond in various hemoglobin and myoglobin derivatives probed by the Raman-active iron histidine stretching mode.
    Gilch H; Schweitzer-Stenner R; Dreybrodt W
    Biophys J; 1993 Oct; 65(4):1470-85. PubMed ID: 8274641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional implications of the proximal hydrogen-bonding network in myoglobin: a resonance Raman and kinetic study of Leu89, Ser92, His97, and F-helix swap mutants.
    Peterson ES; Friedman JM; Chien EY; Sligar SG
    Biochemistry; 1998 Sep; 37(35):12301-19. PubMed ID: 9724545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature dependence of the iron-histidine resonance Raman band of deoxyheme proteins: anharmonic coupling versus distribution over taxonomic conformational substates.
    Korostishevsky M; Zaslavsky Z; Stavrov SS
    Biophys J; 2004 Jan; 86(1 Pt 1):656-9; author reply 660-1. PubMed ID: 14695309
    [No Abstract]   [Full Text] [Related]  

  • 6. pH-induced conformational changes of the Fe(2+)-N epsilon (His F8) linkage in deoxyhemoglobin trout IV detected by the Raman active Fe(2+)-N epsilon (His F8) stretching mode.
    Bosenbeck M; Schweitzer-Stenner R; Dreybrodt W
    Biophys J; 1992 Jan; 61(1):31-41. PubMed ID: 1540697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigations of optical line shapes and kinetic hole burning in myoglobin.
    Srajer V; Champion PM
    Biochemistry; 1991 Jul; 30(30):7390-402. PubMed ID: 1854744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic effects of polarity and hydration in the distal heme pocket of deoxymyoglobin.
    Christian JF; Unno M; Sage JT; Champion PM; Chien E; Sligar SG
    Biochemistry; 1997 Sep; 36(37):11198-204. PubMed ID: 9287162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of an isotope-sensitive low-frequency Raman band specific to metmyoglobin.
    Hirota S; Mizoguchi Y; Yamauchi O; Kitagawa T
    J Biol Inorg Chem; 2002 Jan; 7(1-2):217-21. PubMed ID: 11862557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural fluctuations of myoglobin from normal-modes, Mössbauer, Raman, and absorption spectroscopy.
    Melchers B; Knapp EW; Parak F; Cordone L; Cupane A; Leone M
    Biophys J; 1996 May; 70(5):2092-9. PubMed ID: 9172733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonance Raman studies of CO and O2 binding to elephant myoglobin (distal His(E7)----Gln).
    Kerr EA; Yu NT; Bartnicki DE; Mizukami H
    J Biol Chem; 1985 Jul; 260(14):8360-5. PubMed ID: 4008494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonance raman investigations of site-directed mutants of myoglobin: effects of distal histidine replacement.
    Morikis D; Champion PM; Springer BA; Sligar SG
    Biochemistry; 1989 May; 28(11):4791-800. PubMed ID: 2765511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pressure effects on the proximal heme pocket in myoglobin probed by Raman and near-infrared absorption spectroscopy.
    Galkin O; Buchter S; Tabirian A; Schulte A
    Biophys J; 1997 Nov; 73(5):2752-63. PubMed ID: 9370469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron-histidine resonance Raman band of deoxyheme proteins: effects of anharmonic coupling and glass-liquid phase transition.
    Bitler A; Stavrov SS
    Biophys J; 1999 Nov; 77(5):2764-76. PubMed ID: 10545375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A water network within a protein: temperature-dependent water ligation in H64V-metmyoglobin and relaxation to deoxymyoglobin.
    Engler N; Prusakov V; Ostermann A; Parak FG
    Eur Biophys J; 2003 Feb; 31(8):595-607. PubMed ID: 12582819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for sub-picosecond heme doming in hemoglobin and myoglobin: a time-resolved resonance Raman comparison of carbonmonoxy and deoxy species.
    Franzen S; Bohn B; Poyart C; Martin JL
    Biochemistry; 1995 Jan; 34(4):1224-37. PubMed ID: 7827072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand binding to heme proteins. VI. Interconversion of taxonomic substates in carbonmonoxymyoglobin.
    Johnson JB; Lamb DC; Frauenfelder H; Müller JD; McMahon B; Nienhaus GU; Young RD
    Biophys J; 1996 Sep; 71(3):1563-73. PubMed ID: 8874030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein dynamics in an intermediate state of myoglobin: optical absorption, resonance Raman spectroscopy, and x-ray structure analysis.
    Engler N; Ostermann A; Gassmann A; Lamb DC; Prusakov VE; Schott J; Schweitzer-Stenner R; Parak FG
    Biophys J; 2000 Apr; 78(4):2081-92. PubMed ID: 10733986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carboxy Mb at pH 3. Time-resolved resonance Raman study at cryogenic temperatures.
    Iben IE; Cowen BR; Sanches R; Friedman JM
    Biophys J; 1991 Apr; 59(4):908-19. PubMed ID: 2065191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The iron-proximal histidine linkage and protein control of oxygen binding in hemoglobin. A transient Raman study.
    Friedman JM; Scott TW; Stepnoski RA; Ikeda-Saito M; Yonetani T
    J Biol Chem; 1983 Sep; 258(17):10564-72. PubMed ID: 6885793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.