These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 11509382)

  • 1. Decomposition of protein tryptophan fluorescence spectra into log-normal components. I. Decomposition algorithms.
    Burstein EA; Abornev SM; Reshetnyak YK
    Biophys J; 2001 Sep; 81(3):1699-709. PubMed ID: 11509382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Decomposition fluorescence spectra of tryptophan residues in proteins based on log-normal components by a least squares method].
    Abornev SM; Burshteĭn EA
    Mol Biol (Mosk); 1992; 26(6):1350-61. PubMed ID: 1491678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decomposition of protein tryptophan fluorescence spectra into log-normal components. II. The statistical proof of discreteness of tryptophan classes in proteins.
    Reshetnyak YK; Burstein EA
    Biophys J; 2001 Sep; 81(3):1710-34. PubMed ID: 11509383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The component analysis of tryptophan fluorescence spectra of melittin during its oligomerization].
    Emel'ianenko VI; Grishchenko VM; Burshteĭn EA
    Biofizika; 2005; 50(4):623-30. PubMed ID: 16212052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Resolution of fluorescence spectra by degree of quenching accessibility].
    Burshteĭn EA
    Biofizika; 1996; 41(1):220-3. PubMed ID: 8714473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decomposition of protein tryptophan fluorescence spectra into log-normal components. III. Correlation between fluorescence and microenvironment parameters of individual tryptophan residues.
    Reshetnyak YK; Koshevnik Y; Burstein EA
    Biophys J; 2001 Sep; 81(3):1735-58. PubMed ID: 11509384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The identification of tryptophan residues responsible for ATP-induced increase in intrinsic fluorescence of myosin subfragment 1.
    Reshetnyak YK; Andreev OA; Borejdo J; Toptygin DD; Brand L; Burstein EA
    J Biomol Struct Dyn; 2000 Aug; 18(1):113-25. PubMed ID: 11021656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Assignment of a component of protein fluorescence spectra to tryptophan residues by their three-dimensional microoenvironmental properties].
    Reshetniak IaK; Burshteĭn EA
    Biofizika; 1997; 42(2):293-300. PubMed ID: 9172673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The protein fluorescence and structural toolkit: Database and programs for the analysis of protein fluorescence and structural data.
    Shen C; Menon R; Das D; Bansal N; Nahar N; Guduru N; Jaegle S; Peckham J; Reshetnyak YK
    Proteins; 2008 Jun; 71(4):1744-54. PubMed ID: 18175321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence absorbance inner-filter decomposition: the role of emission shape on estimates of free Ca(2+) using Rhod-2.
    Territo PR; Heil J; Bose S; Evans FJ; Balaban RS
    Appl Spectrosc; 2007 Feb; 61(2):138-47. PubMed ID: 17331304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence spectral resolution of tryptophan residues in bovine and human serum albumins.
    Tayeh N; Rungassamy T; Albani JR
    J Pharm Biomed Anal; 2009 Sep; 50(2):107-16. PubMed ID: 19473803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the performance of multiway methods for simultaneous quantification of two fluoroquinolones in urine samples by fluorescence spectroscopy and second-order calibration strategies.
    Vosough M; Eshlaghi SN; Zadmard R
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():618-24. PubMed ID: 25315874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partial least squares based decomposition of five spectrally overlapping factors.
    Pomerleau-Dalcourt N; Weersink R; Lilge L
    Appl Spectrosc; 2005 Nov; 59(11):1406-14. PubMed ID: 16316520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence-quenching-resolved spectroscopy of proteins.
    Wasylewski Z; poloczek H; Wasniowska A
    Eur J Biochem; 1988 Mar; 172(3):719-24. PubMed ID: 3350020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blind spectral decomposition of single-cell fluorescence by parallel factor analysis.
    Shirakawa H; Miyazaki S
    Biophys J; 2004 Mar; 86(3):1739-52. PubMed ID: 14990501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GTP-binding properties of the membrane-bound form of porcine liver annexin VI.
    Kirilenko A; Golczak M; Pikuła S; Bandorowicz-Pikuła J
    Acta Biochim Pol; 2001; 48(4):851-65. PubMed ID: 11995996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of asymmetric model in analysis of fluorescence spectra of biologically important molecules.
    Kalauzi A; Mutavdzić D; Djikanović D; Radotić K; Jeremić M
    J Fluoresc; 2007 May; 17(3):319-29. PubMed ID: 17394054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Fluorescence spectra and fluorescence quantum yield of triton X-100].
    Zhao J; Wei YJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Aug; 26(8):1523-5. PubMed ID: 17058962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast Decomposition of Three-Component Spectra of Fluorescence Quenching by White and Grey Methods of Data Modeling.
    Kałka AJ; Turek AM
    J Fluoresc; 2018 Mar; 28(2):615-632. PubMed ID: 29611023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-resolved single tryptophan fluorescence in photoactive yellow protein monitors changes in the chromophore structure during the photocycle via energy transfer.
    Otto H; Hoersch D; Meyer TE; Cusanovich MA; Heyn MP
    Biochemistry; 2005 Dec; 44(51):16804-16. PubMed ID: 16363794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.