These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 11509383)

  • 1. Decomposition of protein tryptophan fluorescence spectra into log-normal components. II. The statistical proof of discreteness of tryptophan classes in proteins.
    Reshetnyak YK; Burstein EA
    Biophys J; 2001 Sep; 81(3):1710-34. PubMed ID: 11509383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decomposition of protein tryptophan fluorescence spectra into log-normal components. III. Correlation between fluorescence and microenvironment parameters of individual tryptophan residues.
    Reshetnyak YK; Koshevnik Y; Burstein EA
    Biophys J; 2001 Sep; 81(3):1735-58. PubMed ID: 11509384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decomposition of protein tryptophan fluorescence spectra into log-normal components. I. Decomposition algorithms.
    Burstein EA; Abornev SM; Reshetnyak YK
    Biophys J; 2001 Sep; 81(3):1699-709. PubMed ID: 11509382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Decomposition fluorescence spectra of tryptophan residues in proteins based on log-normal components by a least squares method].
    Abornev SM; Burshteĭn EA
    Mol Biol (Mosk); 1992; 26(6):1350-61. PubMed ID: 1491678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The protein fluorescence and structural toolkit: Database and programs for the analysis of protein fluorescence and structural data.
    Shen C; Menon R; Das D; Bansal N; Nahar N; Guduru N; Jaegle S; Peckham J; Reshetnyak YK
    Proteins; 2008 Jun; 71(4):1744-54. PubMed ID: 18175321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Assignment of a component of protein fluorescence spectra to tryptophan residues by their three-dimensional microoenvironmental properties].
    Reshetniak IaK; Burshteĭn EA
    Biofizika; 1997; 42(2):293-300. PubMed ID: 9172673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The component analysis of tryptophan fluorescence spectra of melittin during its oligomerization].
    Emel'ianenko VI; Grishchenko VM; Burshteĭn EA
    Biofizika; 2005; 50(4):623-30. PubMed ID: 16212052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The identification of tryptophan residues responsible for ATP-induced increase in intrinsic fluorescence of myosin subfragment 1.
    Reshetnyak YK; Andreev OA; Borejdo J; Toptygin DD; Brand L; Burstein EA
    J Biomol Struct Dyn; 2000 Aug; 18(1):113-25. PubMed ID: 11021656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Resolution of fluorescence spectra by degree of quenching accessibility].
    Burshteĭn EA
    Biofizika; 1996; 41(1):220-3. PubMed ID: 8714473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring protein solution structure: Second moments of fluorescent spectra report heterogeneity of tryptophan rotamers.
    Gasymov OK; Abduragimov AR; Glasgow BJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 150():909-20. PubMed ID: 26119357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence spectral resolution of tryptophan residues in bovine and human serum albumins.
    Tayeh N; Rungassamy T; Albani JR
    J Pharm Biomed Anal; 2009 Sep; 50(2):107-16. PubMed ID: 19473803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Similarity of fluorescence lifetime distributions for single tryptophan proteins in the random coil state.
    Swaminathan R; Krishnamoorthy G; Periasamy N
    Biophys J; 1994 Nov; 67(5):2013-23. PubMed ID: 7858139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tryptophan interactions with glycerol/water and trehalose/sucrose cryosolvents: infrared and fluorescence spectroscopy and ab initio calculations.
    Dashnau JL; Zelent B; Vanderkooi JM
    Biophys Chem; 2005 Apr; 114(1):71-83. PubMed ID: 15792863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence-quenching-resolved spectroscopy of proteins.
    Wasylewski Z; poloczek H; Wasniowska A
    Eur J Biochem; 1988 Mar; 172(3):719-24. PubMed ID: 3350020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Assignment of a component of serine proteinase fluorescence spectrum to a cluster of tryptophan residues].
    Reshetniak IaK; Burshteĭn EA
    Biofizika; 1997; 42(4):785-95. PubMed ID: 9410007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Ricin structure: the study by the fluorescence quenching method].
    Bushueva TL; Tonevitskiĭ AG; Burshteĭn EA
    Mol Biol (Mosk); 1990; 24(3):614-20. PubMed ID: 2402231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tryptophan 19 residue is the origin of bovine β-lactoglobulin fluorescence.
    Albani JR; Vogelaer J; Bretesche L; Kmiecik D
    J Pharm Biomed Anal; 2014 Mar; 91():144-50. PubMed ID: 24463042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence and excitation Escherichia coli RecA protein spectra analyzed separately for tyrosine and tryptophan residues.
    Isaev-Ivanov VV; Kozlov MG; Baitin DM; Masui R; Kuramitsu S; Lanzov VA
    Arch Biochem Biophys; 2000 Apr; 376(1):124-40. PubMed ID: 10729198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revisiting time-resolved protein phosphorescence.
    Draganski AR; Corradini MG; Ludescher RD
    Appl Spectrosc; 2015 Sep; 69(9):1074-81. PubMed ID: 26253845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein in sugar films and in glycerol/water as examined by infrared spectroscopy and by the fluorescence and phosphorescence of tryptophan.
    Wright WW; Guffanti GT; Vanderkooi JM
    Biophys J; 2003 Sep; 85(3):1980-95. PubMed ID: 12944311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.