These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 11509542)

  • 1. Regulation of vocal fold transepithelial water fluxes.
    Fisher KV; Telser A; Phillips JE; Yeates DB
    J Appl Physiol (1985); 2001 Sep; 91(3):1401-11. PubMed ID: 11509542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vocal fold epithelial response to luminal osmotic perturbation.
    Sivasankar M; Fisher KV
    J Speech Lang Hear Res; 2007 Aug; 50(4):886-98. PubMed ID: 17675594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bidirectional transepithelial water transport: measurement and governing mechanisms.
    Phillips JE; Wong LB; Yeates DB
    Biophys J; 1999 Feb; 76(2):869-77. PubMed ID: 9929488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cystic fibrosis transmembrane conductance regulator and chloride-dependent ion fluxes of ovine vocal fold epithelium.
    Leydon C; Fisher KV; Lodewyck-Falciglia D
    J Speech Lang Hear Res; 2009 Jun; 52(3):745-54. PubMed ID: 18806217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunolocalization of aquaporins in vocal fold epithelia.
    Lodewyck D; Menco B; Fisher K
    Arch Otolaryngol Head Neck Surg; 2007 Jun; 133(6):557-63. PubMed ID: 17576906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bidirectional transepithelial water transport: chloride-dependent mechanisms.
    Phillips JE; Yeates DB
    J Membr Biol; 2000 Jun; 175(3):213-21. PubMed ID: 10833531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of distinct layers within the stratified squamous epithelium of the adult human true vocal fold.
    Dowdall JR; Sadow PM; Hartnick C; Vinarsky V; Mou H; Zhao R; Song PC; Franco RA; Rajagopal J
    Laryngoscope; 2015 Sep; 125(9):E313-9. PubMed ID: 25988619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of active ion transport across primary rabbit corneal epithelial cell layers (RCrECL) cultured at an air-interface.
    Chang-Lin JE; Kim KJ; Lee VH
    Exp Eye Res; 2005 Jun; 80(6):827-36. PubMed ID: 15939039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Paths of ion transport across canine fetal tracheal epithelium.
    Cotton CU; Boucher RC; Gatzy JT
    J Appl Physiol (1985); 1988 Dec; 65(6):2376-82. PubMed ID: 3215837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular site of active K absorption in the guinea-pig distal colonic epithelium.
    Dörge A; Beck FX; Rechkemmer G
    Pflugers Arch; 1998 Jul; 436(2):280-8. PubMed ID: 9594029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vocal folds detect ionic perturbations on the luminal surface: an in vitro investigation.
    Sivasankar M; Fisher KV
    J Voice; 2008 Jul; 22(4):408-19. PubMed ID: 17280815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Na,K-ATPase gene transfer mitigates an oxidant-induced decrease of active sodium transport in rat fetal ATII cells.
    Thome U; Chen L; Factor P; Dumasius V; Freeman B; Sznajder JI; Matalon S
    Am J Respir Cell Mol Biol; 2001 Mar; 24(3):245-52. PubMed ID: 11245623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetics of potassium ion transport in Aplysia gut.
    Gerencser GA; Loo SY; Cornette KM; Zhang J
    Zoolog Sci; 2002 Jun; 19(6):629-32. PubMed ID: 12130789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion transport in the intestine of Gobius niger in both isotonic and hypotonic conditions.
    Trischitta F; Denaro MG; Faggio C
    J Exp Zool A Comp Exp Biol; 2004 Jan; 301(1):49-62. PubMed ID: 14695688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage-induced Na/K pump charge movements in dialyzed heart cells.
    Gadsby DC; Nakao M; Bahinski A
    Soc Gen Physiol Ser; 1991; 46():355-71. PubMed ID: 1653992
    [No Abstract]   [Full Text] [Related]  

  • 16. Sodium transport and the control of epiblast polarity in the early chick embryo.
    Stern CD; MacKenzie DO
    J Embryol Exp Morphol; 1983 Oct; 77():73-98. PubMed ID: 6317786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity of the basolateral K+ channels is coupled to the Na+-K+-ATPase in the cortical collecting duct.
    Muto S; Asano Y; Wang W; Seldin D; Giebisch G
    Am J Physiol Renal Physiol; 2003 Nov; 285(5):F945-54. PubMed ID: 14532163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Na-K-ATPase in dog tracheal epithelium: enzymatic and ion transport measurements.
    Westenfelder C; Earnest WR; Al-Bazzaz F
    J Appl Physiol Respir Environ Exerc Physiol; 1980 Jun; 48(6):1008-19. PubMed ID: 6247300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion transport and regulation of respiratory tract fluid output in dogs.
    Chen BT; Yeates DB
    J Appl Physiol (1985); 2001 Mar; 90(3):821-31. PubMed ID: 11181589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mercury binding site on Na+/K(+)-ATPase: a cysteine in the first transmembrane segment.
    Wang X; Horisberger JD
    Mol Pharmacol; 1996 Sep; 50(3):687-91. PubMed ID: 8794911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.