These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 11509572)

  • 1. The DNA-binding domain of yeast heat shock transcription factor independently regulates both the N- and C-terminal activation domains.
    Bulman AL; Hubl ST; Nelson HC
    J Biol Chem; 2001 Oct; 276(43):40254-62. PubMed ID: 11509572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The wing in yeast heat shock transcription factor (HSF) DNA-binding domain is required for full activity.
    Cicero MP; Hubl ST; Harrison CJ; Littlefield O; Hardy JA; Nelson HC
    Nucleic Acids Res; 2001 Apr; 29(8):1715-23. PubMed ID: 11292844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of the C-terminal activator domain in yeast heat shock factor: independent control of transient and sustained transcriptional activity.
    Chen Y; Barlev NA; Westergaard O; Jakobsen BK
    EMBO J; 1993 Dec; 12(13):5007-18. PubMed ID: 8262043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic association of transcriptional activation domains and regulatory regions in Saccharomyces cerevisiae heat shock factor.
    Chen T; Parker CS
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1200-5. PubMed ID: 11818569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The C-terminal hydrophobic repeat of Schizosaccharomyces pombe heat shock factor is not required for heat-induced DNA-binding.
    Saltsman KA; Prentice HL; Kingston RE
    Yeast; 1998 Jun; 14(8):733-46. PubMed ID: 9675818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-dependent regulation of a heterologous transcriptional activation domain fused to yeast heat shock transcription factor.
    Bonner JJ; Heyward S; Fackenthal DL
    Mol Cell Biol; 1992 Mar; 12(3):1021-30. PubMed ID: 1545786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of an alpha-helical bulge in the yeast heat shock transcription factor.
    Hardy JA; Walsh ST; Nelson HC
    J Mol Biol; 2000 Jan; 295(3):393-409. PubMed ID: 10623534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation of the yeast heat shock transcription factor is implicated in gene-specific activation dependent on the architecture of the heat shock element.
    Hashikawa N; Sakurai H
    Mol Cell Biol; 2004 May; 24(9):3648-59. PubMed ID: 15082761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yeast heat shock transcription factor contains a flexible linker between the DNA-binding and trimerization domains. Implications for DNA binding by trimeric proteins.
    Flick KE; Gonzalez L; Harrison CJ; Nelson HC
    J Biol Chem; 1994 Apr; 269(17):12475-81. PubMed ID: 8175654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of trehalose and heat in the structure of the C-terminal activation domain of the heat shock transcription factor.
    Bulman AL; Nelson HC
    Proteins; 2005 Mar; 58(4):826-35. PubMed ID: 15651035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of human heat shock factor trimerization by the linker domain.
    Liu PC; Thiele DJ
    J Biol Chem; 1999 Jun; 274(24):17219-25. PubMed ID: 10358080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yeast heat shock transcription factor N-terminal activation domains are unstructured as probed by heteronuclear NMR spectroscopy.
    Cho HS; Liu CW; Damberger FF; Pelton JG; Nelson HC; Wemmer DE
    Protein Sci; 1996 Feb; 5(2):262-9. PubMed ID: 8745404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor.
    Hahn JS; Neef DW; Thiele DJ
    Mol Microbiol; 2006 Apr; 60(1):240-51. PubMed ID: 16556235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new use for the 'wing' of the 'winged' helix-turn-helix motif in the HSF-DNA cocrystal.
    Littlefield O; Nelson HC
    Nat Struct Biol; 1999 May; 6(5):464-70. PubMed ID: 10331875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational analysis of the DNA-binding domain of yeast heat shock transcription factor.
    Hubl ST; Owens JC; Nelson HC
    Nat Struct Biol; 1994 Sep; 1(9):615-20. PubMed ID: 7634101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The yeast heat shock transcription factor changes conformation in response to superoxide and temperature.
    Lee S; Carlson T; Christian N; Lea K; Kedzie J; Reilly JP; Bonner JJ
    Mol Biol Cell; 2000 May; 11(5):1753-64. PubMed ID: 10793149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural analysis of yeast HSF by site-specific crosslinking.
    Bonner JJ; Chen D; Storey K; Tushan M; Lea K
    J Mol Biol; 2000 Sep; 302(3):581-92. PubMed ID: 10986120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The DNA-binding domain of yeast Hsf1 regulates both DNA-binding and transcriptional activities.
    Yamamoto A; Sakurai H
    Biochem Biophys Res Commun; 2006 Aug; 346(4):1324-9. PubMed ID: 16806072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The GCN4 leucine zipper can functionally substitute for the heat shock transcription factor's trimerization domain.
    Drees BL; Grotkopp EK; Nelson HC
    J Mol Biol; 1997 Oct; 273(1):61-74. PubMed ID: 9367746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel domain of the yeast heat shock factor that regulates its activation function.
    Sakurai H; Fukasawa T
    Biochem Biophys Res Commun; 2001 Jul; 285(3):696-701. PubMed ID: 11453649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.