BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 11509672)

  • 1. Identification of a signal-responsive nuclear export sequence in class II histone deacetylases.
    McKinsey TA; Zhang CL; Olson EN
    Mol Cell Biol; 2001 Sep; 21(18):6312-21. PubMed ID: 11509672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation.
    McKinsey TA; Zhang CL; Lu J; Olson EN
    Nature; 2000 Nov; 408(6808):106-11. PubMed ID: 11081517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5.
    McKinsey TA; Zhang CL; Olson EN
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14400-5. PubMed ID: 11114197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation.
    Zhang CL; McKinsey TA; Olson EN
    Mol Cell Biol; 2002 Oct; 22(20):7302-12. PubMed ID: 12242305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The transcriptional corepressor MITR is a signal-responsive inhibitor of myogenesis.
    Zhang CL; McKinsey TA; Olson EN
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7354-9. PubMed ID: 11390982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association of COOH-terminal-binding protein (CtBP) and MEF2-interacting transcription repressor (MITR) contributes to transcriptional repression of the MEF2 transcription factor.
    Zhang CL; McKinsey TA; Lu JR; Olson EN
    J Biol Chem; 2001 Jan; 276(1):35-9. PubMed ID: 11022042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Association with class IIa histone deacetylases upregulates the sumoylation of MEF2 transcription factors.
    Grégoire S; Yang XJ
    Mol Cell Biol; 2005 Mar; 25(6):2273-87. PubMed ID: 15743823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dynamic role for HDAC7 in MEF2-mediated muscle differentiation.
    Dressel U; Bailey PJ; Wang SC; Downes M; Evans RM; Muscat GE
    J Biol Chem; 2001 May; 276(20):17007-13. PubMed ID: 11279209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear calcium/calmodulin-dependent protein kinase IIdelta preferentially transmits signals to histone deacetylase 4 in cardiac cells.
    Little GH; Bai Y; Williams T; Poizat C
    J Biol Chem; 2007 Mar; 282(10):7219-31. PubMed ID: 17179159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy.
    Zhang CL; McKinsey TA; Chang S; Antos CL; Hill JA; Olson EN
    Cell; 2002 Aug; 110(4):479-88. PubMed ID: 12202037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium regulates transcriptional repression of myocyte enhancer factor 2 by histone deacetylase 4.
    Youn HD; Grozinger CM; Liu JO
    J Biol Chem; 2000 Jul; 275(29):22563-7. PubMed ID: 10825153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mirk/dyrk1B decreases the nuclear accumulation of class II histone deacetylases during skeletal muscle differentiation.
    Deng X; Ewton DZ; Mercer SE; Friedman E
    J Biol Chem; 2005 Feb; 280(6):4894-905. PubMed ID: 15546868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histone deacetylase 4 possesses intrinsic nuclear import and export signals.
    Wang AH; Yang XJ
    Mol Cell Biol; 2001 Sep; 21(17):5992-6005. PubMed ID: 11486037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The nuclear localization domain of the MEF2 family of transcription factors shows member-specific features and mediates the nuclear import of histone deacetylase 4.
    Borghi S; Molinari S; Razzini G; Parise F; Battini R; Ferrari S
    J Cell Sci; 2001 Dec; 114(Pt 24):4477-83. PubMed ID: 11792813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histone deacetylase 5 acquires calcium/calmodulin-dependent kinase II responsiveness by oligomerization with histone deacetylase 4.
    Backs J; Backs T; Bezprozvannaya S; McKinsey TA; Olson EN
    Mol Cell Biol; 2008 May; 28(10):3437-45. PubMed ID: 18332106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CaM kinase IIdeltaC phosphorylation of 14-3-3beta in vascular smooth muscle cells: activation of class II HDAC repression.
    Ellis JJ; Valencia TG; Zeng H; Roberts LD; Deaton RA; Grant SR
    Mol Cell Biochem; 2003 Jan; 242(1-2):153-61. PubMed ID: 12619878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases.
    Lu J; McKinsey TA; Zhang CL; Olson EN
    Mol Cell; 2000 Aug; 6(2):233-44. PubMed ID: 10983972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases.
    Lu J; McKinsey TA; Nicol RL; Olson EN
    Proc Natl Acad Sci U S A; 2000 Apr; 97(8):4070-5. PubMed ID: 10737771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Class II histone deacetylases: structure, function, and regulation.
    Bertos NR; Wang AH; Yang XJ
    Biochem Cell Biol; 2001; 79(3):243-52. PubMed ID: 11467738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization.
    Grozinger CM; Schreiber SL
    Proc Natl Acad Sci U S A; 2000 Jul; 97(14):7835-40. PubMed ID: 10869435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.