BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 11510534)

  • 1. Size- and shape-dependent separation of TiO2 colloidal sub-populations with gravitational field flow fractionation.
    Rasouli S; Blanchart P; Clédat D; Cardo PJ
    J Chromatogr A; 2001 Jul; 923(1-2):119-26. PubMed ID: 11510534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different elution modes and field programming in gravitational field-flow fractionation. 2. Experimental verification of the range of conditions for flow-rate and carrier liquid density programming.
    Plocková J; Chmelík J
    J Chromatogr A; 2000 Feb; 868(2):217-27. PubMed ID: 10701672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elution mode of Pneumocystis carinii cysts in gravitational field-flow fractionation.
    Bories C; Cardot PJ; Abramowski V; Poüs C; Merino-Dugay A; Baron B; Mougeot G
    J Chromatogr; 1992 Aug; 579(1):143-52. PubMed ID: 1447341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TiO2 colloidal suspension polydispersity analysed with sedimentation field flow fractionation and electron microscopy.
    Cardot PJ; Rasouli S; Blanchart P
    J Chromatogr A; 2001 Jan; 905(1-2):163-73. PubMed ID: 11206783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different elution modes and field programming in gravitational field-flow fractionation. III. Field programming by flow-rate gradient generated by a programmable pump.
    Plocková J; Chmelík J
    J Chromatogr A; 2001 May; 918(2):361-70. PubMed ID: 11407583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination of gravitational SPLITT fractionation and field-flow fractionation for size-sorting and characterization of sea sediment.
    Moon MH; Yang SG; Lee JY; Lee S
    Anal Bioanal Chem; 2005 Mar; 381(6):1299-304. PubMed ID: 15744513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling gravitational and flow field-flow fractionation, and size-distribution analysis of whole yeast cells.
    Sanz R; Puignou L; Galceran MT; Reschiglian P; Zattoni A; Melucci D
    Anal Bioanal Chem; 2004 Aug; 379(7-8):1068-75. PubMed ID: 15232672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gravitational field-flow fractionation for the characterisation of active dry wine yeast.
    Sanz R; Puigno L; Reschiglian P; Galceran MT
    J Chromatogr A; 2001 Jun; 919(2):339-47. PubMed ID: 11442040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size separation of supermicrometer particles in asymmetrical flow field-flow fractionation. Flow conditions for rapid elution.
    Wahlund KG; Zattoni A
    Anal Chem; 2002 Nov; 74(21):5621-8. PubMed ID: 12433097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effects of carrier liquid and flow rate on the separation in gravitational field-flow fractionation].
    Guo S; Zhu C; Gao-Yang Y; Qiu B; Wu D; Liang Q; He J; Han N
    Se Pu; 2016 Feb; 34(2):146-51. PubMed ID: 27382718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the carrier composition on thermal field-flow fractionation for the characterisation of sub-micron polystyrene latex particles.
    Mes EP; Tijssen R; Kok WT
    J Chromatogr A; 2001 Jan; 907(1-2):201-9. PubMed ID: 11217026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osmolarity effects on red blood cell elution in sedimentation field-flow fractionation.
    Assidjo NE; Chianéa T; Clarot I; Dreyfuss MF; Cardot PJ
    J Chromatogr Sci; 1999 Jul; 37(7):229-36. PubMed ID: 10422264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-speed particle separation and steric inversion in thin flow field-flow fractionation channels.
    Jensen KD; Williams SK; Giddings JC
    J Chromatogr A; 1996 Oct; 746(1):137-45. PubMed ID: 8885386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different elution modes and field programming in gravitational field-flow fractionation. IV. Field programming achieved with channels of non-constant cross-sections.
    Plocková J; Matulík F; Chmelík J
    J Chromatogr A; 2002 Apr; 955(1):95-103. PubMed ID: 12061568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of comprehensive function of factors on retention behavior of microparticles in gravitational field-flow fractionation.
    Guo S; Qiu BL; Zhu CQ; Yang YG; Wu D; Liang QH; Han NY
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Sep; 1031():1-7. PubMed ID: 27447927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of experimental conditions for the separation of small and large starch granules by gravitational field-flow fractionation.
    Janousková J; Budinská M; Plocková J; Chmelík J
    J Chromatogr A; 2001 Apr; 914(1-2):183-7. PubMed ID: 11358212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous split-flow thin cell and gravitational field-flow fractionation of wheat starch particles.
    Contado C; Reschiglian P; Faccini S; Zattoni A; Dondi F
    J Chromatogr A; 2000 Feb; 871(1-2):449-60. PubMed ID: 10735325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation of polystyrene microbeads using dielectrophoretic/gravitational field-flow-fractionation.
    Wang XB; Vykoukal J; Becker FF; Gascoyne PR
    Biophys J; 1998 May; 74(5):2689-701. PubMed ID: 9591693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast "hyperlayer" separation development in sedimentation field flow fractionation.
    Kassab JR; Cardot PJ; Zahoransky RA; Battu S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Nov; 826(1-2):8-16. PubMed ID: 16011912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic programming in step-split-flow lateral-transport thin fractionation.
    Ratier C; Hoyos M
    Anal Chem; 2010 Feb; 82(4):1318-25. PubMed ID: 20099837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.