These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 11510560)

  • 1. Separation of proteins using hydrophobic interaction membrane chromatography.
    Ghosh R
    J Chromatogr A; 2001 Jul; 923(1-2):59-64. PubMed ID: 11510560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverse colloidal crystal membranes for hydrophobic interaction membrane chromatography.
    Vu AT; Wang X; Wickramasinghe SR; Yu B; Yuan H; Cong H; Luo Y; Tang J
    J Sep Sci; 2015 Aug; 38(16):2819-25. PubMed ID: 26046335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein separation using membrane chromatography: opportunities and challenges.
    Ghosh R
    J Chromatogr A; 2002 Apr; 952(1-2):13-27. PubMed ID: 12064524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fractionation of proteins with modified membranes.
    Millesime L; Dulieu J; Chaufer B
    Bioseparation; 1996 Jun; 6(3):135-45. PubMed ID: 8987680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly hydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes via postfabrication grafting of surface-tailored silica nanoparticles.
    Liang S; Kang Y; Tiraferri A; Giannelis EP; Huang X; Elimelech M
    ACS Appl Mater Interfaces; 2013 Jul; 5(14):6694-703. PubMed ID: 23796125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review on the Application of Mixed-mode Chromatography for Separation of Structure Isoforms.
    Arakawa T
    Curr Protein Pept Sci; 2019; 20(1):56-60. PubMed ID: 28990529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast, low-pressure chromatographic separation of proteins using hydroxyapatite nanoparticles.
    Chen G; Zhitomirsky I; Ghosh R
    Talanta; 2019 Jul; 199():472-477. PubMed ID: 30952286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of mixed-mode chromatographic resins for separating IgG from serum albumin containing feedstock.
    Wang RZ; Lin DQ; Tong HF; Lu HL; Yao SJ
    J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Oct; 936():33-41. PubMed ID: 23973532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile preparation of salt-tolerant anion-exchange membrane adsorber using hydrophobic membrane as substrate.
    Fan J; Luo J; Chen X; Wan Y
    J Chromatogr A; 2017 Mar; 1490():54-62. PubMed ID: 28215404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of anticoagulant polyvinylidene fluoride hollow fiber hemodialysis membranes.
    Zhang Q; Lu X; Yang S; Zhang Q; Zhao L
    Biomed Tech (Berl); 2017 Feb; 62(1):57-65. PubMed ID: 26966926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution chiral separation using microfluidics-based membrane chromatography.
    Wang PC; Gao J; Lee CS
    J Chromatogr A; 2002 Jan; 942(1-2):115-22. PubMed ID: 11822377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microsequence analysis of electroblotted proteins. II. Comparison of sequence performance on different types of PVDF membranes.
    Reim DF; Speicher DW
    Anal Biochem; 1992 Nov; 207(1):19-23. PubMed ID: 1489094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of a micromembrane chromatography module to the examination of protein adsorption equilibrium.
    Káňavová N; Kosior A; Antošová M; Faber R; Polakovič M
    J Sep Sci; 2012 Nov; 35(22):3177-83. PubMed ID: 22907826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion-pair chromatography for identification of picomolar-order protein on a PVDF membrane.
    Shindo N; Fujimura T; Kazuno S; Murayama K
    Methods Mol Biol; 2000; 159():87-100. PubMed ID: 11050719
    [No Abstract]   [Full Text] [Related]  

  • 15. Antifouling polyvinylidene fluoride ultrafiltration membrane fabricated from embedding polypyrrole coated multiwalled carbon nanotubes.
    Vatanpour V; Ghadimi A; Karimi A; Khataee A; Yekavalangi ME
    Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():41-51. PubMed ID: 29752113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A procedure for the detection of free thiol-containing proteins on a polyvinylidene difluoride membrane.
    Kamiya T
    J Immunoassay; 1997 Feb; 18(1):111-23. PubMed ID: 9139046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induced binding of proteins by ammonium sulfate in affinity and ion-exchange column chromatography.
    Arakawa T; Tsumoto K; Ejima D; Kita Y; Yonezawa Y; Tokunaga M
    J Biochem Biophys Methods; 2007 Apr; 70(3):493-8. PubMed ID: 17210183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altering efficiency of hydrophobic interaction chromatography by combined salt and temperature effects.
    Muca R; Piatkowski W; Antos D
    J Chromatogr A; 2009 Dec; 1216(50):8712-21. PubMed ID: 19419727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paper-PEG-based membranes for hydrophobic interaction chromatography: purification of monoclonal antibody.
    Yu D; Chen X; Pelton R; Ghosh R
    Biotechnol Bioeng; 2008 Apr; 99(6):1434-42. PubMed ID: 17972326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved hollow-fibre membranes for dye-affinity chromatography.
    Wolman FJ; Smolko EE; Cascone O; Grasselli M
    J Sep Sci; 2005 Jan; 28(1):45-51. PubMed ID: 15688630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.