These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 11510656)

  • 21. Propensity for biofilm formation by aerobic mesophilic and thermophilic spore forming bacteria isolated from Chinese milk powders.
    Sadiq FA; Flint S; Yuan L; Li Y; Liu T; He G
    Int J Food Microbiol; 2017 Dec; 262():89-98. PubMed ID: 28968534
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Processes of bioadhesion on stainless steel surfaces and cleanability: A review with special reference to the food industry.
    Boulané-Petermann L
    Biofouling; 1996; 10(4):275-300. PubMed ID: 22115182
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adhesion and removal kinetics of Bacillus cereus biofilms on Ni-PTFE modified stainless steel.
    Huang K; McLandsborough LA; Goddard JM
    Biofouling; 2016; 32(5):523-33. PubMed ID: 27020838
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effectiveness of sanitation with quaternary ammonium compound or chlorine on stainless steel and other domestic food-preparation surfaces.
    Frank JF; Chmielewski RA
    J Food Prot; 1997 Jan; 60(1):43-7. PubMed ID: 10465039
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel hyperthermoacidic archaeal enzymes for removal of thermophilic biofilms from stainless steel.
    Nam Y; Barnebey A; Kim HK; Yannone SM; Flint S
    J Appl Microbiol; 2023 Jun; 134(6):. PubMed ID: 37218716
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Innovative Control of Biofilms on Stainless Steel Surfaces Using Electrolyzed Water in the Dairy Industry.
    Jiménez-Pichardo R; Hernández-Martínez I; Regalado-González C; Santos-Cruz J; Meas-Vong Y; Wacher-Rodarte MDC; Carrillo-Reyes J; Sánchez-Ortega I; García-Almendárez BE
    Foods; 2021 Jan; 10(1):. PubMed ID: 33419000
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of nanometer dimension topographical features on the hygienic status of stainless steel.
    Verran J; Rowe DL; Boyd RD
    J Food Prot; 2001 Aug; 64(8):1183-7. PubMed ID: 11510657
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biofilm-producing ability and efficiency of sanitizing agents against Prototheca zopfii isolates from bovine subclinical mastitis.
    Gonçalves JL; Lee SH; de Paula Arruda E; Pedroso Galles D; Camargo Caetano V; Fernandes de Oliveira CA; Fernandes AM; Veiga dos Santos M
    J Dairy Sci; 2015 Jun; 98(6):3613-21. PubMed ID: 25841971
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inactivation of
    Kim SH; Park SH; Kim SS; Kang DH
    J Food Prot; 2019 Sep; 82(9):1496-1500. PubMed ID: 31411506
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Resistance of pathogenic bacteria on the surface of stainless steel depending on attachment form and efficacy of chemical sanitizers.
    Bae YM; Baek SY; Lee SY
    Int J Food Microbiol; 2012 Feb; 153(3):465-73. PubMed ID: 22225983
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Growth and Biofilm Formation by Listeria monocytogenes in Catfish Mucus Extract on Four Food Contact Surfaces at 22 and 10°C and Their Reduction by Commercial Disinfectants.
    Dhowlaghar N; Abeysundara PA; Nannapaneni R; Schilling MW; Chang S; Cheng WH; Sharma CS
    J Food Prot; 2018 Jan; 81(1):59-67. PubMed ID: 29257728
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Growth and adherence on stainless steel by Enterococcus faecium cells.
    Andrade NJ; Ajao DB; Zottola EA
    J Food Prot; 1998 Nov; 61(11):1454-8. PubMed ID: 9829184
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancing the bactericidal effect of electrolyzed water on Listeria monocytogenes biofilms formed on stainless steel.
    Ayebah B; Hung YC; Frank JF
    J Food Prot; 2005 Jul; 68(7):1375-80. PubMed ID: 16013373
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of vacuum filter sock surface sample collection method for Bacillus spores from porous and non-porous surfaces.
    Brown GS; Betty RG; Brockmann JE; Lucero DA; Souza CA; Walsh KS; Boucher RM; Tezak MS; Wilson MC
    J Environ Monit; 2007 Jul; 9(7):666-71. PubMed ID: 17607386
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of surface chemistry on the hygienic status of industrial stainless steel.
    Boulange-Petermann L; Jullien C; Dubois PE; Benezech T; Faille C
    Biofouling; 2004 Feb; 20(1):25-33. PubMed ID: 15079890
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potential use of copper as a hygienic surface; problems associated with cumulative soiling and cleaning.
    Airey P; Verran J
    J Hosp Infect; 2007 Nov; 67(3):271-7. PubMed ID: 17950486
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inactivation of Escherichia coli O157:H7 in biofilm on stainless steel by treatment with an alkaline cleaner and a bacteriophage.
    Sharma M; Ryu JH; Beuchat LR
    J Appl Microbiol; 2005; 99(3):449-59. PubMed ID: 16108786
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of milk proteins on adhesion of bacteria to stainless steel surfaces.
    Barnes LM; Lo MF; Adams MR; Chamberlain AH
    Appl Environ Microbiol; 1999 Oct; 65(10):4543-8. PubMed ID: 10508087
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The formation of spores in biofilms of Anoxybacillus flavithermus.
    Burgess SA; Brooks JD; Rakonjac J; Walker KM; Flint SH
    J Appl Microbiol; 2009 Sep; 107(3):1012-8. PubMed ID: 19320952
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of chlorine, chlorine dioxide, and a peroxyacetic acid-based sanitizer for effectiveness in killing Bacillus cereus and Bacillus thuringiensis spores in suspensions, on the surface of stainless steel, and on apples.
    Kreske AC; Ryu JH; Beuchat LR
    J Food Prot; 2006 Aug; 69(8):1892-903. PubMed ID: 16924915
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.