BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 11511213)

  • 1. Synthesis and spectroscopic studies of non-heme diiron(III) species with a terminal hydroperoxide ligand: models for hemerythrin.
    Mizoguchi TJ; Kuzelka J; Spingler B; DuBois JL; Davydov RM; Hedman B; Hodgson KO; Lippard SJ
    Inorg Chem; 2001 Aug; 40(18):4662-73. PubMed ID: 11511213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the syn disposition of nitrogen donors in non-heme diiron enzymes. Synthesis, characterization, and hydrogen peroxide reactivity of diiron(III) complexes with the syn N-donor ligand H2BPG2DEV.
    Friedle S; Kodanko JJ; Morys AJ; Hayashi T; Moënne-Loccoz P; Lippard SJ
    J Am Chem Soc; 2009 Oct; 131(40):14508-20. PubMed ID: 19757795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water affects the stereochemistry and dioxygen reactivity of carboxylate-rich diiron(II) models for the diiron centers in dioxygen-dependent non-heme enzymes.
    Yoon S; Lippard SJ
    J Am Chem Soc; 2005 Jun; 127(23):8386-97. PubMed ID: 15941272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel diiron complex as a functional model for hemerythrin.
    Arii H; Nagatomo S; Kitagawa T; Miwa T; Jitsukawa K; Einaga H; Masuda H
    J Inorg Biochem; 2000 Nov; 82(1-4):153-62. PubMed ID: 11132622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tetranuclear iron(III) complexes of an octadentate pyridine-carboxylate ligand and their catalytic activity in alkane oxidation by hydrogen peroxide.
    Gutkina EA; Trukhan VM; Pierpont CG; Mkoyan S; Strelets VV; Nordlander E; Shteinman AA
    Dalton Trans; 2006 Jan; (3):492-501. PubMed ID: 16395449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and spectroscopic characterization of (mu-hydroxo or mu-oxo)(mu-peroxo)diiron(III) complexes: models for peroxo intermediates of non-heme diiron proteins.
    Zhang X; Furutachi H; Fujinami S; Nagatomo S; Maeda Y; Watanabe Y; Kitagawa T; Suzuki M
    J Am Chem Soc; 2005 Jan; 127(3):826-7. PubMed ID: 15656607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and electrochemical studies of diiron complexes of 1,8-naphthyridine-based dinucleating ligands to model features of the active sites of non-heme diiron enzymes.
    He C; Lippard SJ
    Inorg Chem; 2001 Mar; 40(7):1414-20. PubMed ID: 11261945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling features of the non-heme diiron cores in O2-activating enzymes through the synthesis, characterization, and oxidation of 1,8-naphthyridine-based complexes.
    Kuzelka J; Mukhopadhyay S; Spingler B; Lippard SJ
    Inorg Chem; 2003 Oct; 42(20):6447-57. PubMed ID: 14514321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and spectroscopy of micro-oxo (O(2)(-))-bridged heme/non-heme diiron complexes: models for the active site of nitric oxide reductase.
    Wasser IM; Martens CF; Verani CN; Rentschler E; Huang HW; Moënne-Loccoz P; Zakharov LN; Rheingold AL; Karlin KD
    Inorg Chem; 2004 Jan; 43(2):651-62. PubMed ID: 14731027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional mimic of dioxygen-activating centers in non-heme diiron enzymes: mechanistic implications of paramagnetic intermediates in the reactions between diiron(II) complexes and dioxygen.
    Lee D; Pierce B; Krebs C; Hendrich MP; Huynh BH; Lippard SJ
    J Am Chem Soc; 2002 Apr; 124(15):3993-4007. PubMed ID: 11942838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling dioxygen-activating centers in non-heme diiron enzymes: carboxylate shifts in diiron(II) complexes supported by sterically hindered carboxylate ligands.
    Lee D; Lippard SJ
    Inorg Chem; 2002 May; 41(10):2704-19. PubMed ID: 12005495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of substrate on the diiron(III) site in stearoyl acyl carrier protein delta 9-desaturase as disclosed by cryoreduction electron paramagnetic resonance/electron nuclear double resonance spectroscopy.
    Davydov R; Behrouzian B; Smoukov S; Stubbe J; Hoffman BM; Shanklin J
    Biochemistry; 2005 Feb; 44(4):1309-15. PubMed ID: 15667224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction of (mu-oxo)diiron(III) core with CO2 in N-methylimidazole: formation of mono(mu-carboxylato)(mu-oxo)diiron(III) complexes with N-methylimidazole as ligands.
    Marlin DS; Olmstead MM; Mascharak PK
    Inorg Chem; 2003 Mar; 42(5):1681-7. PubMed ID: 12611539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural, EPR, and Mössbauer characterization of (μ-alkoxo)(μ-carboxylato)diiron(II,III) model complexes for the active sites of mixed-valent diiron enzymes.
    Li F; Chakrabarti M; Dong Y; Kauffmann K; Bominaar EL; Münck E; Que L
    Inorg Chem; 2012 Mar; 51(5):2917-29. PubMed ID: 22360600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure, exogenous ligand binding, and redox properties of an engineered diiron active site in a bacterial hemerythrin.
    Okamoto Y; Onoda A; Sugimoto H; Takano Y; Hirota S; Kurtz DM; Shiro Y; Hayashi T
    Inorg Chem; 2013 Nov; 52(22):13014-20. PubMed ID: 24187962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactions of nitric oxide with the reduced non-heme diiron center of the soluble methane monooxygenase hydroxylase.
    Coufal DE; Tavares P; Pereira AS; Hyunh BH; Lippard SJ
    Biochemistry; 1999 Apr; 38(14):4504-13. PubMed ID: 10194372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic analogue of the [Fe(2)(mu-OH)(2)(mu-O(2)CR)](3+) core of soluble methane monooxygenase hydroxylase via synthesis and dioxygen reactivity of carboxylate-bridged diiron(II) complexes.
    Lee D; Lippard SJ
    Inorg Chem; 2002 Feb; 41(4):827-37. PubMed ID: 11849083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide adducts of the binuclear iron site of hemerythrin: spectroscopy and reactivity.
    Nocek JM; Kurtz DM; Sage JT; Xia YM; Debrunner P; Shiemke AK; Sanders-Loehr J; Loehr TM
    Biochemistry; 1988 Feb; 27(3):1014-24. PubMed ID: 3365363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the identity and diiron core transformations of a (μ-oxo)diiron(III) complex supported by electron-rich tris(pyridyl-2-methyl)amine ligands.
    Do LH; Xue G; Que L; Lippard SJ
    Inorg Chem; 2012 Feb; 51(4):2393-402. PubMed ID: 22264120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward functional carboxylate-bridged diiron protein mimics: achieving structural stability and conformational flexibility using a macrocylic ligand framework.
    Do LH; Lippard SJ
    J Am Chem Soc; 2011 Jul; 133(27):10568-81. PubMed ID: 21682286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.