BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 11511356)

  • 1. Mediator, not holoenzyme, is directly recruited to the heat shock promoter by HSF upon heat shock.
    Park JM; Werner J; Kim JM; Lis JT; Kim YJ
    Mol Cell; 2001 Jul; 8(1):9-19. PubMed ID: 11511356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HSF recruitment and loss at most Drosophila heat shock loci is coordinated and depends on proximal promoter sequences.
    Shopland LS; Lis JT
    Chromosoma; 1996 Sep; 105(3):158-71. PubMed ID: 8781184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo: roles in promoter proximal pausing and transcription elongation.
    Andrulis ED; Guzmán E; Döring P; Werner J; Lis JT
    Genes Dev; 2000 Oct; 14(20):2635-49. PubMed ID: 11040217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of heat shock factor association with native gene loci in living cells.
    Yao J; Munson KM; Webb WW; Lis JT
    Nature; 2006 Aug; 442(7106):1050-3. PubMed ID: 16929308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HSF access to heat shock elements in vivo depends critically on promoter architecture defined by GAGA factor, TFIID, and RNA polymerase II binding sites.
    Shopland LS; Hirayoshi K; Fernandes M; Lis JT
    Genes Dev; 1995 Nov; 9(22):2756-69. PubMed ID: 7590251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drosophila ELL is associated with actively elongating RNA polymerase II on transcriptionally active sites in vivo.
    Gerber M; Ma J; Dean K; Eissenberg JC; Shilatifard A
    EMBO J; 2001 Nov; 20(21):6104-14. PubMed ID: 11689450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcription factor and polymerase recruitment, modification, and movement on dhsp70 in vivo in the minutes following heat shock.
    Boehm AK; Saunders A; Werner J; Lis JT
    Mol Cell Biol; 2003 Nov; 23(21):7628-37. PubMed ID: 14560008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in Drosophila.
    Wu CH; Yamaguchi Y; Benjamin LR; Horvat-Gordon M; Washinsky J; Enerly E; Larsson J; Lambertsson A; Handa H; Gilmour D
    Genes Dev; 2003 Jun; 17(11):1402-14. PubMed ID: 12782658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium salicylate decreases intracellular ATP, induces both heat shock factor binding and chromosomal puffing, but does not induce hsp 70 gene transcription in Drosophila.
    Winegarden NA; Wong KS; Sopta M; Westwood JT
    J Biol Chem; 1996 Oct; 271(43):26971-80. PubMed ID: 8900183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Negative elongation factor accelerates the rate at which heat shock genes are shut off by facilitating dissociation of heat shock factor.
    Ghosh SK; Missra A; Gilmour DS
    Mol Cell Biol; 2011 Oct; 31(20):4232-43. PubMed ID: 21859888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin landscape dictates HSF binding to target DNA elements.
    Guertin MJ; Lis JT
    PLoS Genet; 2010 Sep; 6(9):e1001114. PubMed ID: 20844575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The RNA processing exosome is linked to elongating RNA polymerase II in Drosophila.
    Andrulis ED; Werner J; Nazarian A; Erdjument-Bromage H; Tempst P; Lis JT
    Nature; 2002 Dec 19-26; 420(6917):837-41. PubMed ID: 12490954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole-genome analysis reveals that active heat shock factor binding sites are mostly associated with non-heat shock genes in Drosophila melanogaster.
    Gonsalves SE; Moses AM; Razak Z; Robert F; Westwood JT
    PLoS One; 2011 Jan; 6(1):e15934. PubMed ID: 21264254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arabidopsis heat shock factor is constitutively active in Drosophila and human cells.
    Hübel A; Lee JH; Wu C; Schöffl F
    Mol Gen Genet; 1995 Jul; 248(2):136-41. PubMed ID: 7651336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic association of transcriptional activation domains and regulatory regions in Saccharomyces cerevisiae heat shock factor.
    Chen T; Parker CS
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1200-5. PubMed ID: 11818569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat-induced degradation of PER and TIM in Drosophila bearing a conditional allele of the heat shock transcription factor gene.
    Sidote D; Edery I
    Chronobiol Int; 1999 Jul; 16(4):519-25. PubMed ID: 10442244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation.
    Clos J; Westwood JT; Becker PB; Wilson S; Lambert K; Wu C
    Cell; 1990 Nov; 63(5):1085-97. PubMed ID: 2257625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential targets for HSF1 within the preinitiation complex.
    Yuan CX; Gurley WB
    Cell Stress Chaperones; 2000 Jul; 5(3):229-42. PubMed ID: 11005381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. P-TEFb kinase recruitment and function at heat shock loci.
    Lis JT; Mason P; Peng J; Price DH; Werner J
    Genes Dev; 2000 Apr; 14(7):792-803. PubMed ID: 10766736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cdk7 is required for full activation of Drosophila heat shock genes and RNA polymerase II phosphorylation in vivo.
    Schwartz BE; Larochelle S; Suter B; Lis JT
    Mol Cell Biol; 2003 Oct; 23(19):6876-86. PubMed ID: 12972606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.