These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 11512)

  • 21. The Organization of the Second Optic Chiasm of the
    Shinomiya K; Horne JA; McLin S; Wiederman M; Nern A; Plaza SM; Meinertzhagen IA
    Front Neural Circuits; 2019; 13():65. PubMed ID: 31680879
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optic lobe organization in stomatopod crustacean species possessing different degrees of retinal complexity.
    Lin C; Chou A; Cronin TW
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2020 Mar; 206(2):247-258. PubMed ID: 31811397
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The neurons of the first synaptic region of the optic neuropil of the firefly, Phausis splendidula l. (Coleoptera).
    Ohly KP
    Cell Tissue Res; 1975; 158(1):89-109. PubMed ID: 1149081
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa.
    Sinakevitch I; Douglass JK; Scholtz G; Loesel R; Strausfeld NJ
    J Comp Neurol; 2003 Dec; 467(2):150-72. PubMed ID: 14595766
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The organisation of the lamina ganglionaris of the crabs Scylla serrata and Leptograpsus variegatus.
    Stowe S; Ribi WA; Sandeman DC
    Cell Tissue Res; 1977 Mar; 178(4):517-32. PubMed ID: 858157
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ommatidial type-specific interphotoreceptor connections in the lamina of the swallowtail butterfly, Papilio xuthus.
    Takemura SY; Arikawa K
    J Comp Neurol; 2006 Feb; 494(4):663-72. PubMed ID: 16374804
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The first optic ganglion of the bee. IV. Synaptic fine structure and connectivity patterns of receptor cell axons and first order interneurones.
    Ribi WA
    Cell Tissue Res; 1981; 215(3):443-64. PubMed ID: 7214488
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The development of neuronal connection patterns in the visual systems of insects.
    Meinertzhagen IA
    Ciba Found Symp; 1975; 0(29):265-88. PubMed ID: 1039912
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photoreceptor projections and receptive fields in the dorsal rim area and main retina of the locust eye.
    Schmeling F; Tegtmeier J; Kinoshita M; Homberg U
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 May; 201(5):427-40. PubMed ID: 25715758
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photoreceptor visual fields, ommatidial array, and receptor axon projections in the polarisation-sensitive dorsal rim area of the cricket compound eye.
    Blum M; Labhart T
    J Comp Physiol A; 2000 Feb; 186(2):119-28. PubMed ID: 10707310
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visual system of calliphorid flies: organization of optic glomeruli and their lobula complex efferents.
    Strausfeld NJ; Okamura JY
    J Comp Neurol; 2007 Jan; 500(1):166-88. PubMed ID: 17099891
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neuroarchitecture of the color and polarization vision system of the stomatopod Haptosquilla.
    Kleinlogel S; Marshall NJ; Horwood JM; Land MF
    J Comp Neurol; 2003 Dec; 467(3):326-42. PubMed ID: 14608597
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The photoreceptor axon projection and its evolution in the neural superposition eyes of some primitive brachyceran diptera.
    Shaw SR
    Brain Behav Evol; 1990; 35(2):107-25. PubMed ID: 2354353
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Independent guidance of retinal axons in the developing visual system of Drosophila.
    Kunes S; Wilson C; Steller H
    J Neurosci; 1993 Feb; 13(2):752-67. PubMed ID: 8426235
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla.
    Takemura SY; Lu Z; Meinertzhagen IA
    J Comp Neurol; 2008 Aug; 509(5):493-513. PubMed ID: 18537121
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Termination profiles of photoreceptor cells in the larval eye of the swallowtail butterfly.
    Ichikawa T; Tateda H
    J Neurocytol; 1984 Apr; 13(2):227-38. PubMed ID: 6726289
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Serotonin-like immunoreactivity in the optic lobes of three insect species.
    Nässel DR; Klemm N
    Cell Tissue Res; 1983; 232(1):129-40. PubMed ID: 6349816
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The optic lobes of Lepidoptera.
    Strausfeld NJ; Blest AD
    Philos Trans R Soc Lond B Biol Sci; 1970 Apr; 258(820):81-134. PubMed ID: 22408825
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Position of growth cones within the retinal nerve fibre layer of fetal ferrets.
    FitzGibbon T; Reese BE
    J Comp Neurol; 1992 Sep; 323(2):153-66. PubMed ID: 1401254
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fine structure of the visual system of the honey bee (Apis mellifera). II. The lamina.
    Varela FG
    J Ultrastruct Res; 1970 Apr; 31(1):178-94. PubMed ID: 5442605
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.