These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 11512)
41. Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster. Meinertzhagen IA; O'Neil SD J Comp Neurol; 1991 Mar; 305(2):232-63. PubMed ID: 1902848 [TBL] [Abstract][Full Text] [Related]
42. Postembryonic development of the visual system of the locust, Schistocerca gregaria. II. An experimental investigation of the formation of the retina-lamina projection. Anderson H J Embryol Exp Morphol; 1978 Aug; 46():147-70. PubMed ID: 702028 [TBL] [Abstract][Full Text] [Related]
43. Morphology of physiologically identified retinogeniculate X- and Y-axons in the cat. Sur M; Esguerra M; Garraghty PE; Kritzer MF; Sherman SM J Neurophysiol; 1987 Jul; 58(1):1-32. PubMed ID: 3612221 [TBL] [Abstract][Full Text] [Related]
44. Organization of local interneurons in optic glomeruli of the dipterous visual system and comparisons with the antennal lobes. Strausfeld NJ; Sinakevitch I; Okamura JY Dev Neurobiol; 2007 Sep; 67(10):1267-88. PubMed ID: 17638381 [TBL] [Abstract][Full Text] [Related]
45. Segregation of visual input to the mushroom bodies in the honeybee (Apis mellifera). Ehmer B; Gronenberg W J Comp Neurol; 2002 Sep; 451(4):362-73. PubMed ID: 12210130 [TBL] [Abstract][Full Text] [Related]
46. The optic lobe of Drosophila melanogaster. II. Sorting of retinotopic pathways in the medulla. Bausenwein B; Dittrich AP; Fischbach KF Cell Tissue Res; 1992 Jan; 267(1):17-28. PubMed ID: 1735111 [TBL] [Abstract][Full Text] [Related]
47. Mature and developing visual system of Ceratitis capitata (Diptera, Tephritidae): histochemical evidence of nitric oxide synthase in the wild type and the white eye mutant strains. Conforti E; Torti C; Malacrida AR; Bernocchi G Brain Res; 1999 Oct; 843(1-2):1-11. PubMed ID: 10528104 [TBL] [Abstract][Full Text] [Related]
48. Differentiation of fly visual interneurons after laser ablation of their central targets early in development. Nässel DR; Geiger G; Seyan HS J Comp Neurol; 1983 Jun; 216(4):421-8. PubMed ID: 6875046 [TBL] [Abstract][Full Text] [Related]
49. Immunocytochemical evidence that collision sensing neurons in the locust visual system contain acetylcholine. Rind FC; Leitinger G J Comp Neurol; 2000 Jul; 423(3):389-401. PubMed ID: 10870080 [TBL] [Abstract][Full Text] [Related]
50. Neuroanatomy of the visual afferents in the horseshoe crab (Limulus polyphemus). Chamberlain SC; Barlow RB J Comp Neurol; 1980 Jul; 192(2):387-400. PubMed ID: 7400403 [TBL] [Abstract][Full Text] [Related]
51. Direct connections between the R7/8 and R1-6 photoreceptor subsystems in the dipteran visual system. Shaw SR; Fröhlich A; Meinertzhagen IA Cell Tissue Res; 1989 Aug; 257(2):295-302. PubMed ID: 2776184 [TBL] [Abstract][Full Text] [Related]
52. Postembryonic changes in the optic primordia and optic bud in the flesh fly Sarcophaga ruficornis fabr. (Diptera: Sarcophagidae). Singh YN; Singh M Z Mikrosk Anat Forsch; 1979; 93(5):901-14. PubMed ID: 545933 [TBL] [Abstract][Full Text] [Related]
53. Relationship between photoreceptor terminations and centrifugal neurons in the optic lobe of octopus. Saidel WM Cell Tissue Res; 1979; 204(3):463-72. PubMed ID: 93516 [TBL] [Abstract][Full Text] [Related]
54. Fine structure of the retinulae in the compound eye of the honey-bee. GOLDSMITH TH J Cell Biol; 1962 Sep; 14(3):489-94. PubMed ID: 13960661 [TBL] [Abstract][Full Text] [Related]
55. Organization of optic lobes that support motion detection in a semiterrestrial crab. Sztarker J; Strausfeld NJ; Tomsic D J Comp Neurol; 2005 Dec; 493(3):396-411. PubMed ID: 16261533 [TBL] [Abstract][Full Text] [Related]
56. The unit structure of the locust compound eye. Wilson M; Garrard P; McGinness S Cell Tissue Res; 1978 Dec; 195(2):205-26. PubMed ID: 737716 [TBL] [Abstract][Full Text] [Related]
57. Characterization of a reduced-eye mutant of the grasshopper, Melanoplus sanguinipes. Emery DJ; Bell KA; Chapco W; Steeves JD J Embryol Exp Morphol; 1984 Oct; 83():189-211. PubMed ID: 6438267 [TBL] [Abstract][Full Text] [Related]
58. The first optic ganglion of the bee. III. Regional comparison of the morphology of photoreceptor-cell axons. Ribi WA Cell Tissue Res; 1979 Sep; 200(3):345-57. PubMed ID: 487403 [TBL] [Abstract][Full Text] [Related]
59. Fibre organization of the monkey's optic tract: I. Segregation of functionally distinct optic axons. Reese BE; Cowey A J Comp Neurol; 1990 May; 295(3):385-400. PubMed ID: 2351758 [TBL] [Abstract][Full Text] [Related]
60. The ultrastructural organization of the visual system of the wax moth, Galleria mellonella: the optic tract. Stone GC; Koopowitz H Cell Tissue Res; 1976 Nov; 174(4):533-45. PubMed ID: 1000590 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]