These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 11512449)

  • 1. Degradation of phenol by Trichosporon sp. LE3 cells immobilized in alginate.
    Santos VL; Heilbuth NM; Linardi VR
    J Basic Microbiol; 2001; 41(3-4):171-8. PubMed ID: 11512449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization of Sphingomonas sp. GY2B in polyvinyl alcohol-alginate-kaolin beads for efficient degradation of phenol against unfavorable environmental factors.
    Ruan B; Wu P; Chen M; Lai X; Chen L; Yu L; Gong B; Kang C; Dang Z; Shi Z; Liu Z
    Ecotoxicol Environ Saf; 2018 Oct; 162():103-111. PubMed ID: 29990721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced degradation of phenol by Pseudomonas sp. CP4 entrapped in agar and calcium alginate beads in batch and continuous processes.
    Aneez Ahamad PY; Mohammad Kunhi AA
    Biodegradation; 2011 Apr; 22(2):253-65. PubMed ID: 20658308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial behaviour in the biodegradation of phenol by indigenous bacteria immobilized in Ca-alginate beads.
    Namane A; Amrouche F; Arrar J; Ali O; Hellal A
    Environ Technol; 2020 Jun; 41(14):1829-1836. PubMed ID: 30526418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of phenol biodegradation using Bacillus amyloliquefaciens strain WJDB-1 immobilized in alginate-chitosan-alginate (ACA) microcapsules by electrochemical method.
    Lu D; Zhang Y; Niu S; Wang L; Lin S; Wang C; Ye W; Yan C
    Biodegradation; 2012 Apr; 23(2):209-19. PubMed ID: 21809019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenol degradation by a Graphium sp. FIB4 isolated from industrial effluents.
    Santos VL; Heilbuth NM; Braga DT; Monteiro AS; Linardi VR
    J Basic Microbiol; 2003; 43(3):238-48. PubMed ID: 12761775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immobilization of halophilic yeast for effective removal of phenol in hypersaline conditions.
    Jiang Y; Yang K; Deng T; Ji B; Shang Y; Wang H
    Water Sci Technol; 2018 Feb; 77(3-4):706-713. PubMed ID: 29431715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Batch-mode degradation of high-strength phenolic pollutants by Pseudomonas aeruginosa strain STV1713 immobilized on single and hybrid matrices.
    Sasi R; Vasu ST
    Biodegradation; 2024 Jul; 35(4):423-438. PubMed ID: 38310579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced phenol degradation by Pseudomonas sp. SA01: gaining insight into the novel single and hybrid immobilizations.
    Mollaei M; Abdollahpour S; Atashgahi S; Abbasi H; Masoomi F; Rad I; Lotfi AS; Zahiri HS; Vali H; Noghabi KA
    J Hazard Mater; 2010 Mar; 175(1-3):284-92. PubMed ID: 19883975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenol degradation by immobilized cells of Arthrobacter citreus.
    Karigar C; Mahesh A; Nagenahalli M; Yun DJ
    Biodegradation; 2006 Feb; 17(1):47-55. PubMed ID: 16453171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of phenol on biodegradation of p-nitrophenol by freely suspended and immobilized Nocardioides sp. NSP41.
    Cho YG; Rhee SK; Lee ST
    Biodegradation; 2000; 11(1):21-8. PubMed ID: 11194970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of phenol in a continuous process: comparative study of stirred tank and fluidized-bed bioreactors.
    González G; Herrera MG; García MT; Peña MM
    Bioresour Technol; 2001 Feb; 76(3):245-51. PubMed ID: 11198177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of the biodegradation of phenol in wastewaters from the chemical industry by covalently immobilized Trichosporon cutaneum cells.
    Yotova L; Tzibranska I; Tileva F; Markx GH; Georgieva N
    J Ind Microbiol Biotechnol; 2009 Mar; 36(3):367-72. PubMed ID: 19052785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Internal mass transfer effect on biodegradation of phenol by Ca-alginate immobilized Ralstonia eutropha.
    Dursun AY; Tepe O
    J Hazard Mater; 2005 Nov; 126(1-3):105-11. PubMed ID: 16051433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of dimethylphthalate by cells of Bacillus sp. immobilized in calcium alginate and polyurethane foam.
    Niazi JH; Karegoudar TB
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2001; 36(6):1135-44. PubMed ID: 11501311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid matrix characterization of immobilized Pseudomonas putida MTCC 1194 used for phenol degradation.
    Bandhyopadhyay K; Das D; Maiti BR
    Appl Microbiol Biotechnol; 1999 Jun; 51(6):891-5. PubMed ID: 10422235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotechnological tools to improve bioremediation of phenol by Acinetobacter sp. RTE1.4.
    Paisio CE; Talano MA; González PS; Magallanes-Noguera C; Kurina-Sanz M; Agostini E
    Environ Technol; 2016 Sep; 37(18):2379-90. PubMed ID: 26853946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of chloroform by immobilized cells of Bacillus sp. in calcium alginate beads.
    Dey K; Roy P
    Biotechnol Lett; 2011 Jun; 33(6):1101-5. PubMed ID: 21327703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silica-immobilized Methylobacterium sp. NP3 and Acinetobacter sp. PK1 degrade high concentrations of phenol.
    Khongkhaem P; Intasiri A; Luepromchai E
    Lett Appl Microbiol; 2011 May; 52(5):448-55. PubMed ID: 21291480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel metabolic pathway for salicylate biodegradation via phenol in yeast Trichosporon moniliiforme.
    Iwasaki Y; Gunji H; Kino K; Hattori T; Ishii Y; Kirimura K
    Biodegradation; 2010 Jul; 21(4):557-64. PubMed ID: 20020317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.