These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 1151280)

  • 1. The length-tension relationship of the dorsal longitudinal muscle of a leech.
    Miller JB
    J Exp Biol; 1975 Feb; 62(1):43-53. PubMed ID: 1151280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interplay between passive tension and strong and weak binding cross-bridges in insect indirect flight muscle. A functional dissection by gelsolin-mediated thin filament removal.
    Granzier HL; Wang K
    J Gen Physiol; 1993 Feb; 101(2):235-70. PubMed ID: 7681097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle function in animal movement: passive mechanical properties of leech muscle.
    Tian J; Iwasaki T; Friesen WO
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Dec; 193(12):1205-19. PubMed ID: 17987298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plateau and descending limb of the sarcomere length-tension relation in short length-clamped segments of frog muscle fibres.
    Bagni MA; Cecchi G; Colomo F; Tesi C
    J Physiol; 1988 Jul; 401():581-95. PubMed ID: 3262740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active tension generation in isolated skeletal myofibrils.
    Bartoo ML; Popov VI; Fearn LA; Pollack GH
    J Muscle Res Cell Motil; 1993 Oct; 14(5):498-510. PubMed ID: 8300845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model of the hydrostatic skeleton of the leech.
    Skierczynski BA; Wilson RJ; Kristan WB; Skalak R
    J Theor Biol; 1996 Aug; 181(4):329-42. PubMed ID: 8949581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Serotonin modulates muscle function in the medicinal leech Hirudo verbana.
    Gerry SP; Ellerby DJ
    Biol Lett; 2011 Dec; 7(6):885-8. PubMed ID: 21561963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms underlying rhythmic locomotion: dynamics of muscle activation.
    Chen J; Tian J; Iwasaki T; Friesen WO
    J Exp Biol; 2011 Jun; 214(Pt 11):1955-64. PubMed ID: 21562183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping motor neuron activity to overt behavior in the leech. I. Passive biomechanical properties of the body wall.
    Wilson RJ; Skierczynski BA; Meyer JK; Skalak R; Kristan WB
    J Comp Physiol A; 1996 May; 178(5):637-54. PubMed ID: 8618216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sarcomere and filament lengths in passive muscle fibres with wavy myofibrils.
    Brown LM; González-Serratos H; Huxley AF
    J Muscle Res Cell Motil; 1984 Jun; 5(3):293-314. PubMed ID: 6611352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thick filament movement and isometric tension in activated skeletal muscle.
    Horowits R; Podolsky RJ
    Biophys J; 1988 Jul; 54(1):165-71. PubMed ID: 3416026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulation rate, potentiators, and sarcomere length-tension relationship of muscle.
    Rome LC; Morgan DL; Julian FJ
    Am J Physiol; 1985 Nov; 249(5 Pt 1):C497-502. PubMed ID: 3877467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New insights into the behavior of muscle during active lengthening.
    Morgan DL
    Biophys J; 1990 Feb; 57(2):209-21. PubMed ID: 2317547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Positioning of actin filaments and tension generation in skinned muscle fibres released after stretch beyond overlap of the actin and myosin filaments.
    Higuchi H; Yoshioka T; Maruyama K
    J Muscle Res Cell Motil; 1988 Dec; 9(6):491-8. PubMed ID: 3264837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors influencing the ascending limb of the sarcomere length-tension relationship in rabbit skinned muscle fibres.
    Allen JD; Moss RL
    J Physiol; 1987 Sep; 390():119-36. PubMed ID: 2450989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Passive and active tension in single cardiac myofibrils.
    Linke WA; Popov VI; Pollack GH
    Biophys J; 1994 Aug; 67(2):782-92. PubMed ID: 7948691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stretch receptors and body wall muscle in leeches.
    Blackshaw SE
    Comp Biochem Physiol Comp Physiol; 1993 Aug; 105(4):643-52. PubMed ID: 8102955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms underlying rhythmic locomotion: interactions between activation, tension and body curvature waves.
    Chen J; Friesen WO; Iwasaki T
    J Exp Biol; 2012 Jan; 215(Pt 2):211-9. PubMed ID: 22189764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Length-tension-velocity relationships studied in short consecutive segments of intact muscle fibres of the frog.
    Edman KA; Reggiani C
    Adv Exp Med Biol; 1984; 170():495-509. PubMed ID: 6611031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperpolarizing responses to stretch in sensory neurones innervating leech body wall muscle.
    Blackshaw SE; Thompson SW
    J Physiol; 1988 Feb; 396():121-37. PubMed ID: 3411493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.