These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 11512860)

  • 1. Characterization of silica-supported Ni catalysts effective for methane decomposition by Ni K-edge XAFS.
    Takenaka S; Ogihara H; Yamanaka I; Otsuka K
    J Synchrotron Radiat; 2001 Mar; 8(Pt 2):587-9. PubMed ID: 11512860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. XAFS study of Mn-Ni/Al2O3 catalyst for carbon dioxide reforming of methane.
    Choi SH; Seok SH; Lee JS
    J Synchrotron Radiat; 2001 Mar; 8(Pt 2):596-8. PubMed ID: 11512863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane.
    Han JW; Kim C; Park JS; Lee H
    ChemSusChem; 2014 Feb; 7(2):451-6. PubMed ID: 24402833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the Calcination Technique of Silica on the Properties and Performance of Ni/SiO
    Panchan N; Donphai W; Junsomboon J; Niamnuy C; Chareonpanich M
    ACS Omega; 2019 Nov; 4(19):18076-18086. PubMed ID: 31720510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface properties of Ni-Pt/SiO2 catalysts for N2O decomposition and reduction by H2.
    Arenas-Alatorre J; Gómez-Cortés A; Avalos-Borja M; Díaz G
    J Phys Chem B; 2005 Feb; 109(6):2371-6. PubMed ID: 16851231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfur poisoning mechanism of steam reforming catalysts: an X-ray absorption near edge structure (XANES) spectroscopic study.
    Chen Y; Xie C; Li Y; Song C; Bolin TB
    Phys Chem Chem Phys; 2010 Jun; 12(21):5707-11. PubMed ID: 20431820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low Temperature CO
    Wang F; Han K; Yu W; Zhao L; Wang Y; Wang X; Yu H; Shi W
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35022-35034. PubMed ID: 32644767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size-dependent catalytic hydrogen production
    Fujimoto Y; Ohba T
    Phys Chem Chem Phys; 2022 Dec; 24(47):28794-28803. PubMed ID: 36409209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ni Nanoparticles Supported on Cage-Type Mesoporous Silica for CO2 Hydrogenation with High CH4 Selectivity.
    Budi CS; Wu HC; Chen CS; Saikia D; Kao HM
    ChemSusChem; 2016 Sep; 9(17):2326-31. PubMed ID: 27531065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ni/SiO2 promoted growth of carbon nanofibers from chlorobenzene: characterization of the active metal sites.
    Keane MA; Jacobs G; Patterson PM
    J Colloid Interface Sci; 2006 Oct; 302(2):576-88. PubMed ID: 16860817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and Characterization of Bimetallic Ni50Pt50 Catalyst Supported on SiO2 for N2O Decomposition.
    Angeles-Pascual A; Esparza R; Tellez-Vazquez O; Velumani S; Pérez R
    J Nanosci Nanotechnol; 2015 Dec; 15(12):9473-81. PubMed ID: 26682368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating Catalysis of Methane Decomposition and Electrocatalytic Hydrogen Evolution with Ni/CeO
    Zhang C; Zhang W; Drewett NE; Wang X; Yoo SJ; Wang H; Deng T; Kim JG; Chen H; Huang K; Feng S; Zheng W
    ChemSusChem; 2019 Mar; 12(5):1000-1010. PubMed ID: 30565883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of nickel and zinc ferrite nanocatalysts for decomposition of CO2 greenhouse effect gas.
    Lin KS; Adhikari AK; Wang CY; Hsu PJ; Chan HY
    J Nanosci Nanotechnol; 2013 Apr; 13(4):2538-48. PubMed ID: 23763127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced sulfur resistance of Ni/SiO2 catalyst for methanation via the plasma decomposition of nickel precursor.
    Yan X; Liu Y; Zhao B; Wang Y; Liu CJ
    Phys Chem Chem Phys; 2013 Aug; 15(29):12132-8. PubMed ID: 23670520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insight into the low-temperature decomposition of Aroclor 1254 over activated carbon-supported bimetallic catalysts obtained with XANES and DFT calculations.
    Liu Y; Diao X; Tao F; Yang C; Wang H; Takaoka M; Sun Y
    J Hazard Mater; 2019 Mar; 366():538-544. PubMed ID: 30572293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanostructured Nickel/Silica Catalysts for Continuous Flow Conversion of Levulinic Acid to γ-Valerolactone.
    Mallesham B; Sudarsanam P; Venkata Shiva Reddy B; Govinda Rao B; Reddy BM
    ACS Omega; 2018 Dec; 3(12):16839-16849. PubMed ID: 31458310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ observation of Ni-Mo-S phase formed on NiMo/Al(2)O(3) catalyst sulfided at high pressure by means of Ni and Mo K-edge EXAFS spectroscopy.
    Koizumi N; Hamabe Y; Jung S; Suzuki Y; Yoshida S; Yamada M
    J Synchrotron Radiat; 2010 May; 17(3):414-24. PubMed ID: 20400842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quasi in situ Ni K-edge EXAFS investigation of the spent NiMo catalyst from ultra-deep hydrodesulfurization of gas oil in a commercial plant.
    Hamabe Y; Jung S; Suzuki H; Koizumi N; Yamada M
    J Synchrotron Radiat; 2010 Jul; 17(4):530-9. PubMed ID: 20567086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic X-ray absorption fine structure for Ni-Mn alloys.
    Miyanaga T; Okazaki T; Murako R; Takegahara K; Nagamatsu S; Fujikawa T; Kon H; Sakisaka Y
    J Synchrotron Radiat; 2003 Mar; 10(Pt 2):113-9. PubMed ID: 12606788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.