These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 11513022)

  • 41. Transient blood pressure changes affect the functional magnetic resonance imaging detection of cerebral activation.
    Wang R; Foniok T; Wamsteeker JI; Qiao M; Tomanek B; Vivanco RA; Tuor UI
    Neuroimage; 2006 May; 31(1):1-11. PubMed ID: 16460967
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spatial and temporal analysis of fMRI data on word and sentence reading.
    Haller S; Klarhoefer M; Schwarzbach J; Radue EW; Indefrey P
    Eur J Neurosci; 2007 Oct; 26(7):2074-84. PubMed ID: 17897404
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal.
    Wise RG; Ide K; Poulin MJ; Tracey I
    Neuroimage; 2004 Apr; 21(4):1652-64. PubMed ID: 15050588
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Temporal feature of BOLD responses varies with temporal patterns of movement.
    Tomatsu S; Someya Y; Sung YW; Ogawa S; Kakei S
    Neurosci Res; 2008 Nov; 62(3):160-7. PubMed ID: 18789981
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Intracerebral dynamics of saccade generation in the human frontal eye field and supplementary eye field.
    Lachaux JP; Hoffmann D; Minotti L; Berthoz A; Kahane P
    Neuroimage; 2006 May; 30(4):1302-12. PubMed ID: 16412667
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Methods for determining frequency- and region-dependent relationships between estimated LFPs and BOLD responses in humans.
    Martuzzi R; Murray MM; Meuli RA; Thiran JP; Maeder PP; Michel CM; Grave de Peralta Menendez R; Gonzalez Andino SL
    J Neurophysiol; 2009 Jan; 101(1):491-502. PubMed ID: 19005004
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Movement artefacts and MR BOLD signal increase during different paradigms for mapping the sensorimotor cortex.
    Hoeller M; Krings T; Reinges MH; Hans FJ; Gilsbach JM; Thron A
    Acta Neurochir (Wien); 2002 Mar; 144(3):279-84; discussion 284. PubMed ID: 11956941
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Light stimulus frequency dependence of activity in the rat visual system as studied with high-resolution BOLD fMRI.
    Van Camp N; Verhoye M; De Zeeuw CI; Van der Linden A
    J Neurophysiol; 2006 May; 95(5):3164-70. PubMed ID: 16394078
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Task- and EEG-correlated analyses of BOLD MRI responses to eyes opening and closing.
    Henning S; Merboldt KD; Frahm J
    Brain Res; 2006 Feb; 1073-1074():359-64. PubMed ID: 16457786
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Resampling fMRI time series.
    Friman O; Westin CF
    Neuroimage; 2005 Apr; 25(3):859-67. PubMed ID: 15808986
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A functional magnetic resonance imaging technique based on nulling extravascular gray matter signal.
    Shen Y; Kauppinen RA; Vidyasagar R; Golay X
    J Cereb Blood Flow Metab; 2009 Jan; 29(1):144-56. PubMed ID: 18728677
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spatial sensitivity and temporal response of spin echo and gradient echo bold contrast at 3 T using peak hemodynamic activation time.
    Hulvershorn J; Bloy L; Gualtieri EE; Leigh JS; Elliott MA
    Neuroimage; 2005 Jan; 24(1):216-23. PubMed ID: 15588613
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Time-resolved analysis of fMRI signal changes using Brain Activation Movies.
    Windischberger C; Cunnington R; Lamm C; Lanzenberger R; Langenberger H; Deecke L; Bauer H; Moser E
    J Neurosci Methods; 2008 Mar; 169(1):222-30. PubMed ID: 18207248
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functional MR imaging in pediatrics.
    Martin E; Marcar VL
    Magn Reson Imaging Clin N Am; 2001 Feb; 9(1):231-46, ix-x. PubMed ID: 11278191
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Implications of cortical balanced excitation and inhibition, functional heterogeneity, and sparseness of neuronal activity in fMRI.
    Xu J
    Neurosci Biobehav Rev; 2015 Oct; 57():264-70. PubMed ID: 26341939
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Practice-related changes in neural activation patterns investigated via wavelet-based clustering analysis.
    Lee J; Park C; Dyckman KA; Lazar NA; Austin BP; Li Q; McDowell JE
    Hum Brain Mapp; 2013 Sep; 34(9):2276-91. PubMed ID: 22505290
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Partial wavelet encoding: a new approach for accelerating temporal resolution in contrast-enhanced MR imaging.
    Shimizu K; Panych LP; Mulkern RV; Yoo SS; Schwartz RB; Kikinis R; Jolesz FA
    J Magn Reson Imaging; 1999 May; 9(5):717-24. PubMed ID: 10331769
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of Fourier and wavelet resampling methods.
    Laird AR; Rogers BP; Meyerand ME
    Magn Reson Med; 2004 Feb; 51(2):418-22. PubMed ID: 14755671
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Neuronal or hemodynamic? Grappling with the functional MRI signal.
    Bandettini PA
    Brain Connect; 2014 Sep; 4(7):487-98. PubMed ID: 25093397
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Probabilitic fusion of hemodynamic parameter maps.
    Rajapakse JC
    Crit Rev Biomed Eng; 2000; 28(3 - 4):363-9. PubMed ID: 11108200
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.