These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 11513048)

  • 21. Disentangling the effects of feedback structure and climate on Poaceae annual airborne pollen fluctuations and the possible consequences of climate change.
    García de León D; García-Mozo H; Galán C; Alcázar P; Lima M; González-Andújar JL
    Sci Total Environ; 2015 Oct; 530-531():103-109. PubMed ID: 26026414
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temporal modelling and forecasting of the airborne pollen of Cupressaceae on the southwestern Iberian Peninsula.
    Silva-Palacios I; Fernández-Rodríguez S; Durán-Barroso P; Tormo-Molina R; Maya-Manzano JM; Gonzalo-Garijo Á
    Int J Biometeorol; 2016 Feb; 60(2):297-306. PubMed ID: 26092133
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wind dynamics' influence on south Spain airborne olive-pollen during African intrusions.
    García-Mozo H; Hernández-Ceballos MA; Trigo MM; Galán C
    Sci Total Environ; 2017 Dec; 609():1340-1348. PubMed ID: 28793403
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Variations, trends and forecast models for the airborne Olea europaea pollen season in Tétouan (NW of Morocco).
    Raissouni I; Boullayali A; Recio M; Bouziane H
    Int J Biometeorol; 2024 Sep; ():. PubMed ID: 39235597
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of Quercus flowering trends in NW Spain.
    Jato V; Rodríguez-Rajo FJ; Fernandez-González M; Aira MJ
    Int J Biometeorol; 2015 May; 59(5):517-31. PubMed ID: 25108375
    [TBL] [Abstract][Full Text] [Related]  

  • 26. What are the most important variables for Poaceae airborne pollen forecasting?
    Navares R; Aznarte JL
    Sci Total Environ; 2017 Feb; 579():1161-1169. PubMed ID: 27932221
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fraxinus pollen and allergen concentrations in Ourense (South-western Europe).
    Vara A; Fernández-González M; Aira MJ; Rodríguez-Rajo FJ
    Environ Res; 2016 May; 147():241-8. PubMed ID: 26901381
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Models for forecasting the flowering of Cornicabra olive groves.
    Rojo J; Pérez-Badia R
    Int J Biometeorol; 2015 Nov; 59(11):1547-56. PubMed ID: 25656796
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Constructing a 7-day ahead forecast model for grass pollen at north London, United Kingdom.
    Smith M; Emberlin J
    Clin Exp Allergy; 2005 Oct; 35(10):1400-6. PubMed ID: 16238802
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatiotemporal analysis of olive flowering using geostatistical techniques.
    Rojo J; Pérez-Badia R
    Sci Total Environ; 2015 Feb; 505():860-9. PubMed ID: 25461089
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Airborne pollen of Olea in five regions of Portugal.
    Ribeiro H; Cunha M; Abreu I
    Ann Agric Environ Med; 2005; 12(2):317-20. PubMed ID: 16457492
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting the Poaceae pollen season: six month-ahead forecasting and identification of relevant features.
    Navares R; Aznarte JL
    Int J Biometeorol; 2017 Apr; 61(4):647-656. PubMed ID: 27633563
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Environmental factors affecting the start of pollen season and concentrations of airborne Alnus pollen in two localities of Galicia (NW Spain).
    Rodriguez-Rajo FJ; Dopazo A; Jato V
    Ann Agric Environ Med; 2004; 11(1):35-44. PubMed ID: 15236496
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Airborne grass (Poaceae) pollen in southern Spain. Results of a 10-year study (1987-96).
    González Minero FJ; Candau P; Tomás C; Morales J
    Allergy; 1998 Mar; 53(3):266-74. PubMed ID: 9542606
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Airborne castanea pollen forecasting model for ecological and allergological implementation.
    Astray G; Fernández-González M; Rodríguez-Rajo FJ; López D; Mejuto JC
    Sci Total Environ; 2016 Apr; 548-549():110-121. PubMed ID: 26802339
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing.
    Rojo J; Rivero R; Romero-Morte J; Fernández-González F; Pérez-Badia R
    Int J Biometeorol; 2017 Feb; 61(2):335-348. PubMed ID: 27492630
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterisation of the airborne pollen spectrum in Guadalajara (central Spain) and estimation of the potential allergy risk.
    Rojo J; Rapp A; Lara B; Sabariego S; Fernández-González F; Pérez-Badia R
    Environ Monit Assess; 2016 Mar; 188(3):130. PubMed ID: 26832913
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The weak effects of climatic change on Plantago pollen concentration: 17 years of monitoring in Northwestern Spain.
    González-Parrado Z; Valencia-Barrera RM; Vega-Maray AM; Fuertes-Rodríguez CR; Fernández-González D
    Int J Biometeorol; 2014 Sep; 58(7):1641-50. PubMed ID: 24337493
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Description of the main Poaceae pollen season using bi-Gaussian curves, and forecasting methods for the start and peak dates for this type of season in Rzeszów and Ostrowiec Sw. (SE Poland).
    Kasprzyk I; Walanus A
    J Environ Monit; 2010 Apr; 12(4):906-16. PubMed ID: 20383372
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of airborne Alnus pollen concentration by using ARIMA models.
    Rodríguez-Rajo FJ; Valencia-Barrera RM; Vega-Maray AM; Suárez FJ; Fernández-González D; Jato V
    Ann Agric Environ Med; 2006; 13(1):25-32. PubMed ID: 16841868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.