BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 11513095)

  • 1. Functional residues on the enzyme active site of glyoxalase I from bovine brain.
    Lupidi G; Bollettini M; Venardi G; Marmocchi F; Rotilio G
    Prep Biochem Biotechnol; 2001 Aug; 31(3):317-29. PubMed ID: 11513095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and partial characterization of glyoxalase I from bovine brain.
    Lupidi G; Venardi G; Bollettini M; Marmocchi F; Rotilio G
    Prep Biochem Biotechnol; 2001 Aug; 31(3):305-16. PubMed ID: 11513094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and active site modification studies on glyoxalase I from monkey intestinal mucosa.
    Baskaran S; Balasubramanian KA
    Biochim Biophys Acta; 1987 Jul; 913(3):377-85. PubMed ID: 3109489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional residues at the active site of bovine brain adenosine deaminase.
    Lupidi G; Marmocchi F; Venardi G; Cristalli G
    Biochem Mol Biol Int; 1997 Dec; 43(6):1339-52. PubMed ID: 9442929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the active site of glyoxalase I from human erythrocytes by use of the strong reversible inhibitor S-p-bromobenzylglutathione and metal substitutions.
    Aronsson AC; Sellin S; Tibbelin G; Mannervik B
    Biochem J; 1981 Jul; 197(1):67-75. PubMed ID: 7317034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of arginine residues in glutathione binding to yeast glyoxalase I.
    Schasteen CS; Reed DJ
    Biochim Biophys Acta; 1983 Jan; 742(2):419-25. PubMed ID: 6337639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical modification of rat liver microsomal glutathione transferase defines residues of importance for catalytic function.
    Andersson C; Morgenstern R
    Biochem J; 1990 Dec; 272(2):479-84. PubMed ID: 2268274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical modification studies on purified bovine lens aldose reductase.
    Halder AB; James M; Crabbe C
    Ophthalmic Res; 1985; 17(3):185-8. PubMed ID: 3925401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of amino acid residues at the active site of human liver serine hydroxymethyltransferase.
    Vijayalakshmi D; Rao NA
    Biochem Int; 1989 Sep; 19(3):625-32. PubMed ID: 2818613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutagenesis of residue 157 in the active site of human glyoxalase I.
    Ridderström M; Cameron AD; Jones TA; Mannervik B
    Biochem J; 1997 Nov; 328 ( Pt 1)(Pt 1):231-5. PubMed ID: 9359858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic tryptophan fluorescence of bovine liver adenosine kinase, characterization of ligand binding sites and conformational changes.
    Elalaoui A; Divita G; Maury G; Imbach JL; Goody RS
    Eur J Biochem; 1994 Apr; 221(2):839-46. PubMed ID: 8174564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inactivation of glyoxalase I from porcine erythrocytes and yeast by amino-group reagents.
    Mannervik B; Marmstål E; Ekwall K; Górna-Hall B
    Eur J Biochem; 1975 May; 53(2):327-33. PubMed ID: 237756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. S-2-hydroxyacylglutathione hydrolase (glyoxalase II): active-site mapping of a nonserine thiolesterase.
    Ball JC; Vander Jagt DL
    Biochemistry; 1981 Feb; 20(4):899-905. PubMed ID: 7213621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covalent modification and active site-directed inactivation of a low molecular weight phosphotyrosyl protein phosphatase.
    Zhang ZY; Davis JP; Van Etten RL
    Biochemistry; 1992 Feb; 31(6):1701-11. PubMed ID: 1737025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and kinetic study of glyoxalase-I from rat liver, erythrocytes, brain and kidney.
    Han LP; Davison LM; Vander Jagt DL
    Biochim Biophys Acta; 1976 Sep; 445(2):486-99. PubMed ID: 953039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of amino acid residues essential for enzyme activity of sheep liver 5,10-methylenetetrahydrofolate reductase.
    Varalakshmi K; Savithri HS; Rao NA
    Biochem J; 1986 May; 236(1):295-8. PubMed ID: 3790077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence and nuclear relaxation enhancement studies of the binding of glutathione derivatives to manganese-reconstituted glyoxalase I from human erythrocytes. A model for the catalytic mechanism of the enzyme involving a hydrated metal ion.
    Sellin S; Eriksson LE; Mannervik B
    Biochemistry; 1982 Sep; 21(20):4850-7. PubMed ID: 7138835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active site studies on a narrow-specificity thyroliberin-hydrolysing pyroglutamate aminopeptidase purified from synaptosomal membrane of guinea-pig brain.
    O'Connor B; O'Cuinn G
    J Neurochem; 1987 Mar; 48(3):676-80. PubMed ID: 2879887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the function(s) of active-site arginine residue in Leishmania donovani adenosine kinase.
    Ghosh M; Datta AK
    Biochem J; 1994 Mar; 298 ( Pt 2)(Pt 2):295-301. PubMed ID: 8135734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of glyoxalase I (E. coli)-inhibitor interactions by electrospray time-of-flight mass spectrometry and enzyme kinetic analysis.
    Stokvis E; Clugston SL; Honek JF; Heck AJ
    J Protein Chem; 2000 Jul; 19(5):389-97. PubMed ID: 11212839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.