BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

556 related articles for article (PubMed ID: 11513579)

  • 41. Membrane association of Rac is required for high activity of the respiratory burst oxidase.
    Kreck ML; Freeman JL; Abo A; Lambeth JD
    Biochemistry; 1996 Dec; 35(49):15683-92. PubMed ID: 8961931
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phosphorylation of RhoGDI by p21-activated kinase 1.
    DerMardirossian CM; Bokoch GM
    Methods Enzymol; 2006; 406():80-90. PubMed ID: 16472651
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Crystal structure of human RhoA in a dominantly active form complexed with a GTP analogue.
    Ihara K; Muraguchi S; Kato M; Shimizu T; Shirakawa M; Kuroda S; Kaibuchi K; Hakoshima T
    J Biol Chem; 1998 Apr; 273(16):9656-66. PubMed ID: 9545299
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biologically active lipids are regulators of Rac.GDI complexation.
    Chuang TH; Bohl BP; Bokoch GM
    J Biol Chem; 1993 Dec; 268(35):26206-11. PubMed ID: 8253741
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Participation of Rac GTPase activating proteins in the deactivation of the phagocytic NADPH oxidase.
    Moskwa P; Dagher MC; Paclet MH; Morel F; Ligeti E
    Biochemistry; 2002 Aug; 41(34):10710-6. PubMed ID: 12186557
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Rac-RhoGDI complex and the structural basis for the regulation of Rho proteins by RhoGDI.
    Scheffzek K; Stephan I; Jensen ON; Illenberger D; Gierschik P
    Nat Struct Biol; 2000 Feb; 7(2):122-6. PubMed ID: 10655614
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Regulation of NADPH oxidase activity by Rac GTPase activating protein(s).
    Heyworth PG; Knaus UG; Settleman J; Curnutte JT; Bokoch GM
    Mol Biol Cell; 1993 Nov; 4(11):1217-23. PubMed ID: 8305740
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of a Rac1- and RhoGDI-associated lipid kinase signaling complex.
    Tolias KF; Couvillon AD; Cantley LC; Carpenter CL
    Mol Cell Biol; 1998 Feb; 18(2):762-70. PubMed ID: 9447972
    [TBL] [Abstract][Full Text] [Related]  

  • 49. X-ray crystal structures reveal two activated states for RhoC.
    Dias SM; Cerione RA
    Biochemistry; 2007 Jun; 46(22):6547-58. PubMed ID: 17497936
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tumor-related alternatively spliced Rac1b is not regulated by Rho-GDP dissociation inhibitors and exhibits selective downstream signaling.
    Matos P; Collard JG; Jordan P
    J Biol Chem; 2003 Dec; 278(50):50442-8. PubMed ID: 14506233
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A mammalian inhibitory GDP/GTP exchange protein (GDP dissociation inhibitor) for smg p25A is active on the yeast SEC4 protein.
    Sasaki T; Kaibuchi K; Kabcenell AK; Novick PJ; Takai Y
    Mol Cell Biol; 1991 May; 11(5):2909-12. PubMed ID: 1901952
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Translocation of Rac correlates with NADPH oxidase activation. Evidence for equimolar translocation of oxidase components.
    Quinn MT; Evans T; Loetterle LR; Jesaitis AJ; Bokoch GM
    J Biol Chem; 1993 Oct; 268(28):20983-7. PubMed ID: 8407934
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Purification and characterization from rat liver cytosol of a GDP dissociation inhibitor (GDI) for liver 24K G, a ras p21-like GTP-binding protein, with properties similar to those of smg p25A GDI.
    Ueda T; Takeyama Y; Ohmori T; Ohyanagi H; Saitoh Y; Takai Y
    Biochemistry; 1991 Jan; 30(4):909-17. PubMed ID: 1899198
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rabbit intestine contains a protein that inhibits the dissociation of GDP from and the subsequent binding of GTP to rhoB p20, a ras p21-like GTP-binding protein.
    Ohga N; Kikuchi A; Ueda T; Yamamoto J; Takai Y
    Biochem Biophys Res Commun; 1989 Sep; 163(3):1523-33. PubMed ID: 2506864
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inhibition of NADPH oxidase activation by synthetic peptides mapping within the carboxyl-terminal domain of small GTP-binding proteins. Lack of amino acid sequence specificity and importance of polybasic motif.
    Joseph G; Gorzalczany Y; Koshkin V; Pick E
    J Biol Chem; 1994 Nov; 269(46):29024-31. PubMed ID: 7961867
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The crystal structure of the plant small GTPase OsRac1 reveals its mode of binding to NADPH oxidase.
    Kosami K; Ohki I; Nagano M; Furuita K; Sugiki T; Kawano Y; Kawasaki T; Fujiwara T; Nakagawa A; Shimamoto K; Kojima C
    J Biol Chem; 2014 Oct; 289(41):28569-78. PubMed ID: 25128531
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lfc and Lsc oncoproteins represent two new guanine nucleotide exchange factors for the Rho GTP-binding protein.
    Glaven JA; Whitehead IP; Nomanbhoy T; Kay R; Cerione RA
    J Biol Chem; 1996 Nov; 271(44):27374-81. PubMed ID: 8910315
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interaction of Rac with p67phox and regulation of phagocytic NADPH oxidase activity.
    Diekmann D; Abo A; Johnston C; Segal AW; Hall A
    Science; 1994 Jul; 265(5171):531-3. PubMed ID: 8036496
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regulation by GDI of RhoA/Rho-kinase-induced Ca2+ sensitization of smooth muscle myosin II.
    Gong MC; Gorenne I; Read P; Jia T; Nakamoto RK; Somlyo AV; Somlyo AP
    Am J Physiol Cell Physiol; 2001 Jul; 281(1):C257-69. PubMed ID: 11401849
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Novel intermediate of Rac GTPase activation by guanine nucleotide exchange factor.
    Zhang B; Yang L; Zheng Y
    Biochem Biophys Res Commun; 2005 Jun; 331(2):413-21. PubMed ID: 15850775
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.