BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 11513619)

  • 1. The 4,4'-dipyridyl disulfide-induced formation of GroEL monomers is cooperative and leads to increased hydrophobic exposure.
    Panda M; Smoot AL; Horowitz PM
    Biochemistry; 2001 Aug; 40(34):10402-10. PubMed ID: 11513619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A monomeric variant of GroEL binds nucleotides but is inactive as a molecular chaperone.
    White ZW; Fisher KE; Eisenstein E
    J Biol Chem; 1995 Sep; 270(35):20404-9. PubMed ID: 7657615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissociation of the single-ring chaperonin GroEL by high hydrostatic pressure.
    Panda M; Ybarra J; Horowitz PM
    Biochemistry; 2002 Oct; 41(42):12843-9. PubMed ID: 12379127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inactive GroEL monomers can be isolated and reassembled to functional tetradecamers that contain few bound peptides.
    Ybarra J; Horowitz PM
    J Biol Chem; 1995 Sep; 270(39):22962-7. PubMed ID: 7559433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization of a compact conformation of monomeric GroEL at low temperature by adenine nucleotides.
    Lissin NM; Hemmingsen SM
    FEBS Lett; 1993 Jun; 324(1):41-4. PubMed ID: 8099330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational heterogeneity is revealed in the dissociation of the oligomeric chaperonin GroEL by high hydrostatic pressure.
    Panda M; Horowitz PM
    Biochemistry; 2002 Feb; 41(6):1869-76. PubMed ID: 11827532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Equilibrium and kinetics of the allosteric transition of GroEL studied by solution X-ray scattering and fluorescence spectroscopy.
    Inobe T; Arai M; Nakao M; Ito K; Kamagata K; Makio T; Amemiya Y; Kihara H; Kuwajima K
    J Mol Biol; 2003 Mar; 327(1):183-91. PubMed ID: 12614617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chaperonin GroEL reassembly: an effect of protein ligands and solvent composition.
    Ryabova N; Marchenkov V; Kotova N; Semisotnov G
    Biomolecules; 2014 Apr; 4(2):458-73. PubMed ID: 24970225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A kinetic analysis of the nucleotide-induced allosteric transitions of GroEL.
    Cliff MJ; Kad NM; Hay N; Lund PA; Webb MR; Burston SG; Clarke AR
    J Mol Biol; 1999 Oct; 293(3):667-84. PubMed ID: 10543958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation parameters for the spontaneous and pressure-induced phases of the dissociation of single-ring GroEL (SR1) chaperonin.
    Panda M; Horowitz PM
    Protein J; 2004 Jan; 23(1):85-94. PubMed ID: 15115186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The chaperonin GroEL is destabilized by binding of ADP.
    Gorovits BM; Horowitz PM
    J Biol Chem; 1995 Dec; 270(48):28551-6. PubMed ID: 7499369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro dissociation of self-assembly of three chaperonin 60s: the role of ATP.
    Lissin NM
    FEBS Lett; 1995 Mar; 361(1):55-60. PubMed ID: 7890040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissecting a bimolecular process of MgATP²- binding to the chaperonin GroEL.
    Chen J; Makabe K; Nakamura T; Inobe T; Kuwajima K
    J Mol Biol; 2011 Jul; 410(2):343-56. PubMed ID: 21620859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Denatured proteins facilitate the formation of the football-shaped GroEL-(GroES)2 complex.
    Sameshima T; Iizuka R; Ueno T; Funatsu T
    Biochem J; 2010 Mar; 427(2):247-54. PubMed ID: 20121703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exposure of hydrophobic surfaces on the chaperonin GroEL oligomer by protonation or modification of His-401.
    Gibbons DL; Horowitz PM
    J Biol Chem; 1995 Mar; 270(13):7335-40. PubMed ID: 7706275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoincorporation of 4,4'-bis(1-anilino-8-naphthalenesulfonic acid) into the apical domain of GroEL: specific information from a nonspecific probe.
    Seale JW; Martinez JL; Horowitz PM
    Biochemistry; 1995 Jun; 34(22):7443-9. PubMed ID: 7779787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of ADP and GroES on interaction of molecular chaperonin GroEL with non-native lysozyme].
    Marchenko NIu; Marchenkov VV; Kotova NV; Semisotnov GV; Bulankina NI; Kaliman PA
    Ukr Biokhim Zh (1999); 2003; 75(3):88-94. PubMed ID: 14577157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The binding of bis-ANS to the isolated GroEL apical domain fragment induces the formation of a folding intermediate with increased hydrophobic surface not observed in tetradecameric GroEL.
    Smoot AL; Panda M; Brazil BT; Buckle AM; Fersht AR; Horowitz PM
    Biochemistry; 2001 Apr; 40(14):4484-92. PubMed ID: 11284705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleotide binding to the chaperonin GroEL: non-cooperative binding of ATP analogs and ADP, and cooperative effect of ATP.
    Inobe T; Makio T; Takasu-Ishikawa E; Terada TP; Kuwajima K
    Biochim Biophys Acta; 2001 Feb; 1545(1-2):160-73. PubMed ID: 11342042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Denatured transitions of the molecular chaperone GroEL from Escherichia coli].
    Surin AK; Kotova NV; Marchenkova SIu; Sokolovskiĭ IV; Rodionova NA; Iaklichkin SIu; Semisotnov GV
    Bioorg Khim; 1997 Apr; 23(4):251-6. PubMed ID: 9221726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.