These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 11513740)
41. Identification of miR-185 as a regulator of de novo cholesterol biosynthesis and low density lipoprotein uptake. Yang M; Liu W; Pellicane C; Sahyoun C; Joseph BK; Gallo-Ebert C; Donigan M; Pandya D; Giordano C; Bata A; Nickels JT J Lipid Res; 2014 Feb; 55(2):226-38. PubMed ID: 24296663 [TBL] [Abstract][Full Text] [Related]
42. Expression of sterol regulatory element-binding protein 1c (SREBP-1c) mRNA in rat hepatoma cells requires endogenous LXR ligands. DeBose-Boyd RA; Ou J; Goldstein JL; Brown MS Proc Natl Acad Sci U S A; 2001 Feb; 98(4):1477-82. PubMed ID: 11171976 [TBL] [Abstract][Full Text] [Related]
43. Enhanced Liver Regeneration After Partial Hepatectomy in Sterol Regulatory Element-Binding Protein (SREBP)-1c-Null Mice is Associated with Increased Hepatocellular Cholesterol Availability. Peng J; Yu J; Xu H; Kang C; Shaul PW; Guan Y; Zhang X; Su W Cell Physiol Biochem; 2018; 47(2):784-799. PubMed ID: 29807364 [TBL] [Abstract][Full Text] [Related]
44. The aromatase knockout mouse presents with a sexually dimorphic disruption to cholesterol homeostasis. Hewitt KN; Boon WC; Murata Y; Jones ME; Simpson ER Endocrinology; 2003 Sep; 144(9):3895-903. PubMed ID: 12933663 [TBL] [Abstract][Full Text] [Related]
45. Effects of 25-hydroxycholesterol on cholesterol esterification and sterol regulatory element-binding protein processing are dissociable: implications for cholesterol movement to the regulatory pool in the endoplasmic reticulum. Du X; Pham YH; Brown AJ J Biol Chem; 2004 Nov; 279(45):47010-6. PubMed ID: 15317807 [TBL] [Abstract][Full Text] [Related]
46. Sitosterolemia: exclusion of genes involved in reduced cholesterol biosynthesis. Patel SB; Honda A; Salen G J Lipid Res; 1998 May; 39(5):1055-61. PubMed ID: 9610773 [TBL] [Abstract][Full Text] [Related]
47. SREBP2 Activation Induces Hepatic Long-chain Acyl-CoA Synthetase 1 (ACSL1) Expression in Vivo and in Vitro through a Sterol Regulatory Element (SRE) Motif of the ACSL1 C-promoter. Singh AB; Kan CF; Dong B; Liu J J Biol Chem; 2016 Mar; 291(10):5373-84. PubMed ID: 26728456 [TBL] [Abstract][Full Text] [Related]
48. Homocysteine thiolactone-induced hyperhomocysteinemia does not alter concentrations of cholesterol and SREBP-2 target gene mRNAS in rats. Stangl GI; Weisse K; Dinger C; Hirche F; Brandsch C; Eder K Exp Biol Med (Maywood); 2007 Jan; 232(1):81-7. PubMed ID: 17202588 [TBL] [Abstract][Full Text] [Related]
50. Modulation of sterol regulatory element binding protein-2 in response to rapid follicle development in chickens. Seol HS; Sato K; Matsubara Y; Schneider WJ; Akiba Y Comp Biochem Physiol B Biochem Mol Biol; 2007 Aug; 147(4):698-703. PubMed ID: 17521937 [TBL] [Abstract][Full Text] [Related]
51. The effects of diet and lovastatin on regression of fatty streak lesions and on hepatic and intestinal mRNA levels for the LDL receptor and HMG CoA reductase in F1B hamsters. Pitman WA; Osgood DP; Smith D; Schaefer EJ; Ordovas JM Atherosclerosis; 1998 May; 138(1):43-52. PubMed ID: 9678770 [TBL] [Abstract][Full Text] [Related]
52. Direct binding to sterols accelerates endoplasmic reticulum-associated degradation of HMG CoA reductase. Faulkner RA; Yang Y; Tsien J; Qin T; DeBose-Boyd RA Proc Natl Acad Sci U S A; 2024 Feb; 121(7):e2318822121. PubMed ID: 38319967 [TBL] [Abstract][Full Text] [Related]
53. Proteolysis and sterol regulation. Hampton RY Annu Rev Cell Dev Biol; 2002; 18():345-78. PubMed ID: 12142284 [TBL] [Abstract][Full Text] [Related]
54. Androgens stimulate lipogenic gene expression in prostate cancer cells by activation of the sterol regulatory element-binding protein cleavage activating protein/sterol regulatory element-binding protein pathway. Heemers H; Maes B; Foufelle F; Heyns W; Verhoeven G; Swinnen JV Mol Endocrinol; 2001 Oct; 15(10):1817-28. PubMed ID: 11579213 [TBL] [Abstract][Full Text] [Related]
56. A soy protein diet alters hepatic lipid metabolism gene expression and reduces serum lipids and renal fibrogenic cytokines in rats with chronic nephrotic syndrome. Tovar AR; Murguía F; Cruz C; Hernández-Pando R; Aguilar-Salinas CA; Pedraza-Chaverri J; Correa-Rotter R; Torres N J Nutr; 2002 Sep; 132(9):2562-9. PubMed ID: 12221209 [TBL] [Abstract][Full Text] [Related]
57. Scavenger receptor CD36 mediates inhibition of cholesterol synthesis via activation of the PPARγ/PGC-1α pathway and Insig1/2 expression in hepatocytes. Rodrigue-Way A; Caron V; Bilodeau S; Keil S; Hassan M; Lévy E; Mitchell GA; Tremblay A FASEB J; 2014 Apr; 28(4):1910-23. PubMed ID: 24371122 [TBL] [Abstract][Full Text] [Related]
58. The submicrosomal localization of acyl-coenzyme A-cholesterol acyltransferase and its substrate, and of cholesteryl esters in rat liver. Balasubramaniam S; Venkatesan S; Mitropoulos KA; Peters TJ Biochem J; 1978 Sep; 174(3):863-72. PubMed ID: 728092 [TBL] [Abstract][Full Text] [Related]
59. Dietary calcium decreases plasma cholesterol by down-regulation of intestinal Niemann-Pick C1 like 1 and microsomal triacylglycerol transport protein and up-regulation of CYP7A1 and ABCG 5/8 in hamsters. Ma KY; Yang N; Jiao R; Peng C; Guan L; Huang Y; Chen ZY Mol Nutr Food Res; 2011 Feb; 55(2):247-58. PubMed ID: 20715096 [TBL] [Abstract][Full Text] [Related]
60. Analytical fractionation of human liver microsomal fractions: localization of cholesterol and of the enzymes relevant to its metabolism. Balasubramaniam S; Mitropoulos KA; Venkatesan S; Myant NB; Peters TJ; Postiglione A; Mancini M Clin Sci (Lond); 1981 Apr; 60(4):435-9. PubMed ID: 6166423 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]