These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 11514266)

  • 1. Structural adaptation of microvascular networks: functional roles of adaptive responses.
    Pries AR; Reglin B; Secomb TW
    Am J Physiol Heart Circ Physiol; 2001 Sep; 281(3):H1015-25. PubMed ID: 11514266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remodeling of blood vessels: responses of diameter and wall thickness to hemodynamic and metabolic stimuli.
    Pries AR; Reglin B; Secomb TW
    Hypertension; 2005 Oct; 46(4):725-31. PubMed ID: 16172421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural adaptation and stability of microvascular networks: theory and simulations.
    Pries AR; Secomb TW; Gaehtgens P
    Am J Physiol; 1998 Aug; 275(2):H349-60. PubMed ID: 9683420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural response of microcirculatory networks to changes in demand: information transfer by shear stress.
    Pries AR; Reglin B; Secomb TW
    Am J Physiol Heart Circ Physiol; 2003 Jun; 284(6):H2204-12. PubMed ID: 12573998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microvascular blood viscosity in vivo and the endothelial surface layer.
    Pries AR; Secomb TW
    Am J Physiol Heart Circ Physiol; 2005 Dec; 289(6):H2657-64. PubMed ID: 16040719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microvascular adaptation--regulation, coordination and function.
    Pries AR; Secomb TW
    Z Kardiol; 2000; 89 Suppl 9():IX/117-20. PubMed ID: 11151780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural autoregulation of terminal vascular beds: vascular adaptation and development of hypertension.
    Pries AR; Secomb TW; Gaehtgens P
    Hypertension; 1999 Jan; 33(1):153-61. PubMed ID: 9931096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural adaptation of microvessel diameters in response to metabolic stimuli: where are the oxygen sensors?
    Reglin B; Secomb TW; Pries AR
    Am J Physiol Heart Circ Physiol; 2009 Dec; 297(6):H2206-19. PubMed ID: 19783778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical comparison of wall-derived and erythrocyte-derived mechanisms for metabolic flow regulation in heterogeneous microvascular networks.
    Roy TK; Pries AR; Secomb TW
    Am J Physiol Heart Circ Physiol; 2012 May; 302(10):H1945-52. PubMed ID: 22408023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design principles of vascular beds.
    Pries AR; Secomb TW; Gaehtgens P
    Circ Res; 1995 Nov; 77(5):1017-23. PubMed ID: 7554136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural adaptation of vascular networks: role of the pressure response.
    Pries AR; Reglin B; Secomb TW
    Hypertension; 2001 Dec; 38(6):1476-9. PubMed ID: 11751739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of wall shear stress in microvascular network adaptation.
    Hudetz AG; Kiani MF
    Adv Exp Med Biol; 1992; 316():31-9. PubMed ID: 1288092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A one-dimensional mathematical model for studying the pulsatile flow in microvascular networks.
    Pan Q; Wang R; Reglin B; Cai G; Yan J; Pries AR; Ning G
    J Biomech Eng; 2014 Jan; 136(1):011009. PubMed ID: 24190506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural adaptation of microvascular networks and development of hypertension.
    Pries AR; Secomb TW
    Microcirculation; 2002; 9(4):305-14. PubMed ID: 12152106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural adaptation and heterogeneity of normal and tumor microvascular networks.
    Pries AR; Cornelissen AJ; Sloot AA; Hinkeldey M; Dreher MR; Höpfner M; Dewhirst MW; Secomb TW
    PLoS Comput Biol; 2009 May; 5(5):e1000394. PubMed ID: 19478883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational modeling of blood flow in asymmetrically bifurcating microvessels and its experimental validation.
    Lee TR; Hong JA; Yoo SS; Kim DW
    Int J Numer Method Biomed Eng; 2018 Jun; 34(6):e2981. PubMed ID: 29521012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microvascular blood flow and oxygenation during hemorrhagic hypotension.
    Torres LN; Pittman RN; Torres Filho IP
    Microvasc Res; 2008 Mar; 75(2):217-26. PubMed ID: 17868746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origins of heterogeneity in tissue perfusion and metabolism.
    Pries AR; Secomb TW
    Cardiovasc Res; 2009 Feb; 81(2):328-35. PubMed ID: 19028725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and hemodynamics of microvascular networks: heterogeneity and correlations.
    Pries AR; Secomb TW; Gaehtgens P
    Am J Physiol; 1995 Nov; 269(5 Pt 2):H1713-22. PubMed ID: 7503269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.