These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 11514506)
1. Catabolite repression of the citrate fermentation genes in Klebsiella pneumoniae: evidence for involvement of the cyclic AMP receptor protein. Meyer M; Dimroth P; Bott M J Bacteriol; 2001 Sep; 183(18):5248-56. PubMed ID: 11514506 [TBL] [Abstract][Full Text] [Related]
2. Regulation of anaerobic citrate metabolism in Klebsiella pneumoniae. Bott M; Meyer M; Dimroth P Mol Microbiol; 1995 Nov; 18(3):533-46. PubMed ID: 8748036 [TBL] [Abstract][Full Text] [Related]
3. In vitro binding of the response regulator CitB and of its carboxy-terminal domain to A + T-rich DNA target sequences in the control region of the divergent citC and citS operons of Klebsiella pneumoniae. Meyer M; Dimroth P; Bott M J Mol Biol; 1997 Jun; 269(5):719-31. PubMed ID: 9223636 [TBL] [Abstract][Full Text] [Related]
4. Identification of a gene cluster in Klebsiella pneumoniae which includes citX, a gene required for biosynthesis of the citrate lyase prosthetic group. Schneider K; Kästner CN; Meyer M; Wessel M; Dimroth P; Bott M J Bacteriol; 2002 May; 184(9):2439-46. PubMed ID: 11948157 [TBL] [Abstract][Full Text] [Related]
5. CitA/CitB two-component system regulating citrate fermentation in Escherichia coli and its relation to the DcuS/DcuR system in vivo. Scheu PD; Witan J; Rauschmeier M; Graf S; Liao YF; Ebert-Jung A; Basché T; Erker W; Unden G J Bacteriol; 2012 Feb; 194(3):636-45. PubMed ID: 22101843 [TBL] [Abstract][Full Text] [Related]
6. Anaerobic citrate metabolism and its regulation in enterobacteria. Bott M Arch Microbiol; 1997; 167(2-3):78-88. PubMed ID: 9133329 [TBL] [Abstract][Full Text] [Related]
7. CitAB Two-Component System-Regulated Citrate Utilization Contributes to Liu M; Hao G; Li Z; Zhou Y; Garcia-Sillas R; Li J; Wang H; Kan B; Zhu J Infect Immun; 2019 Mar; 87(3):. PubMed ID: 30559220 [TBL] [Abstract][Full Text] [Related]
8. The Na+-dependent citrate carrier of Klebsiella pneumoniae: high-level expression and site-directed mutagenesis of asparagine-185 and glutamate-194. Kästner CN; Dimroth P; Pos KM Arch Microbiol; 2000; 174(1-2):67-73. PubMed ID: 10985744 [TBL] [Abstract][Full Text] [Related]
9. Role of the cAMP-dependent carbon catabolite repression in capsular polysaccharide biosynthesis in Klebsiella pneumoniae. Lin CT; Chen YC; Jinn TR; Wu CC; Hong YM; Wu WH PLoS One; 2013; 8(2):e54430. PubMed ID: 23408939 [TBL] [Abstract][Full Text] [Related]
10. Roles of catabolite activator protein sites centered at -81.5 and -41.5 in the activation of the Klebsiella aerogenes histidine utilization operon hutUH. Osuna R; Janes BK; Bender RA J Bacteriol; 1994 Sep; 176(17):5513-24. PubMed ID: 8071230 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the citrate/acetate antiporter CitW of Klebsiella pneumoniae. Kästner CN; Schneider K; Dimroth P; Pos KM Arch Microbiol; 2002 Jun; 177(6):500-6. PubMed ID: 12029396 [TBL] [Abstract][Full Text] [Related]
12. Purification of two active fusion proteins of the Na(+)-dependent citrate carrier of Klebsiella pneumoniae. Pos KM; Bott M; Dimroth P FEBS Lett; 1994 Jun; 347(1):37-41. PubMed ID: 8013657 [TBL] [Abstract][Full Text] [Related]
13. Klebsiella pneumoniae genes for citrate lyase and citrate lyase ligase: localization, sequencing, and expression. Bott M; Dimroth P Mol Microbiol; 1994 Oct; 14(2):347-56. PubMed ID: 7830578 [TBL] [Abstract][Full Text] [Related]
14. Klebsiella aerogenes catabolite gene activator protein and the gene encoding it (crp). Osuna R; Bender RA J Bacteriol; 1991 Oct; 173(20):6626-31. PubMed ID: 1655718 [TBL] [Abstract][Full Text] [Related]
15. The periplasmic domain of the histidine autokinase CitA functions as a highly specific citrate receptor. Kaspar S; Perozzo R; Reinelt S; Meyer M; Pfister K; Scapozza L; Bott M Mol Microbiol; 1999 Aug; 33(4):858-72. PubMed ID: 10447894 [TBL] [Abstract][Full Text] [Related]
16. In vitro transcription of the histidine utilization (hutUH) operon from Klebsiella aerogenes. Osuna R; Boylan SA; Bender RA J Bacteriol; 1991 Jan; 173(1):116-23. PubMed ID: 1846133 [TBL] [Abstract][Full Text] [Related]
17. Effect of vfr mutation on global gene expression and catabolite repression control of Pseudomonas aeruginosa. Suh SJ; Runyen-Janecky LJ; Maleniak TC; Hager P; MacGregor CH; Zielinski-Mozny NA; Phibbs PV; West SEH Microbiology (Reading); 2002 May; 148(Pt 5):1561-1569. PubMed ID: 11988531 [TBL] [Abstract][Full Text] [Related]
18. Glucose repression of the Escherichia coli sdhCDAB operon, revisited: regulation by the CRP*cAMP complex. Nam TW; Park YH; Jeong HJ; Ryu S; Seok YJ Nucleic Acids Res; 2005; 33(21):6712-22. PubMed ID: 16314304 [TBL] [Abstract][Full Text] [Related]
19. The production of 1,3-propanediol from mixtures of glycerol and glucose by a Klebsiella pneumoniae mutant deficient in carbon catabolite repression. Oh BR; Hong WK; Heo SY; Luo LH; Kondo A; Seo JW; Kim CH Bioresour Technol; 2013 Feb; 130():719-24. PubMed ID: 23334032 [TBL] [Abstract][Full Text] [Related]
20. A novel mechanism controls anaerobic and catabolite regulation of the Escherichia coli tdc operon. Sawers G Mol Microbiol; 2001 Mar; 39(5):1285-98. PubMed ID: 11251844 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]