These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Pathogenesis of Candida albicans biofilm. Tsui C; Kong EF; Jabra-Rizk MA Pathog Dis; 2016 Jun; 74(4):ftw018. PubMed ID: 26960943 [TBL] [Abstract][Full Text] [Related]
23. Detailed comparison of Candida albicans and Candida glabrata biofilms under different conditions and their susceptibility to caspofungin and anidulafungin. Kucharíková S; Tournu H; Lagrou K; Van Dijck P; Bujdáková H J Med Microbiol; 2011 Sep; 60(Pt 9):1261-1269. PubMed ID: 21566087 [TBL] [Abstract][Full Text] [Related]
24. Effect of filamentation and mode of growth on antifungal susceptibility of Candida albicans. Watamoto T; Samaranayake LP; Jayatilake JA; Egusa H; Yatani H; Seneviratne CJ Int J Antimicrob Agents; 2009 Oct; 34(4):333-9. PubMed ID: 19376687 [TBL] [Abstract][Full Text] [Related]
25. Relative Abundances of Candida albicans and Candida glabrata in Olson ML; Jayaraman A; Kao KC Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29427422 [No Abstract] [Full Text] [Related]
26. Characterization of biofilm formation and the role of BCR1 in clinical isolates of Candida parapsilosis. Pannanusorn S; Ramírez-Zavala B; Lünsdorf H; Agerberth B; Morschhäuser J; Römling U Eukaryot Cell; 2014 Apr; 13(4):438-51. PubMed ID: 24297446 [TBL] [Abstract][Full Text] [Related]
27. Functional Genomic Analysis of Candida albicans Adherence Reveals a Key Role for the Arp2/3 Complex in Cell Wall Remodelling and Biofilm Formation. Lee JA; Robbins N; Xie JL; Ketela T; Cowen LE PLoS Genet; 2016 Nov; 12(11):e1006452. PubMed ID: 27870871 [TBL] [Abstract][Full Text] [Related]
28. Biofilm development by blastospores and hyphae of Candida albicans on abraded denture acrylic resin surfaces. Jackson S; Coulthwaite L; Loewy Z; Scallan A; Verran J J Prosthet Dent; 2014 Oct; 112(4):988-93. PubMed ID: 24726593 [TBL] [Abstract][Full Text] [Related]
29. Antifungal activities of Equol against Wang F; Zhang J; Zhang Q; Song Z; Xin C Virulence; 2024 Dec; 15(1):2404256. PubMed ID: 39267283 [No Abstract] [Full Text] [Related]
30. Recent insights into Candida albicans biofilm resistance mechanisms. Mathé L; Van Dijck P Curr Genet; 2013 Nov; 59(4):251-64. PubMed ID: 23974350 [TBL] [Abstract][Full Text] [Related]
31. Relevance of antifungal penetration in biofilm-associated resistance of Candida albicans and non-albicans Candida species. Singh R; Kumari A; Kaur K; Sethi P; Chakrabarti A J Med Microbiol; 2018 Jul; 67(7):922-926. PubMed ID: 29767615 [TBL] [Abstract][Full Text] [Related]
32. Dispersion as an important step in the Candida albicans biofilm developmental cycle. Uppuluri P; Chaturvedi AK; Srinivasan A; Banerjee M; Ramasubramaniam AK; Köhler JR; Kadosh D; Lopez-Ribot JL PLoS Pathog; 2010 Mar; 6(3):e1000828. PubMed ID: 20360962 [TBL] [Abstract][Full Text] [Related]
33. The calcineruin inhibitor cyclosporine a synergistically enhances the susceptibility of Candida albicans biofilms to fluconazole by multiple mechanisms. Jia W; Zhang H; Li C; Li G; Liu X; Wei J BMC Microbiol; 2016 Jun; 16(1):113. PubMed ID: 27316338 [TBL] [Abstract][Full Text] [Related]
34. Antifungal activity of cathelicidin peptides against planktonic and biofilm cultures of Candida species isolated from vaginal infections. Scarsini M; Tomasinsig L; Arzese A; D'Este F; Oro D; Skerlavaj B Peptides; 2015 Sep; 71():211-21. PubMed ID: 26238597 [TBL] [Abstract][Full Text] [Related]
35. Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Mukherjee PK; Chandra J; Kuhn DM; Ghannoum MA Infect Immun; 2003 Aug; 71(8):4333-40. PubMed ID: 12874310 [TBL] [Abstract][Full Text] [Related]
36. Temporal Expression of Genes in Biofilm-Forming Ocular Candida albicans Isolated From Patients With Keratitis and Orbital Cellulitis. Ranjith K; Kalyana Chakravarthy S; Adicherla H; Sharma S; Shivaji S Invest Ophthalmol Vis Sci; 2018 Jan; 59(1):528-538. PubMed ID: 29372251 [TBL] [Abstract][Full Text] [Related]
37. The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans. Ramage G; VandeWalle K; López-Ribot JL; Wickes BL FEMS Microbiol Lett; 2002 Aug; 214(1):95-100. PubMed ID: 12204378 [TBL] [Abstract][Full Text] [Related]
38. A novel antifungal is active against Candida albicans biofilms and inhibits mutagenic acetaldehyde production in vitro. Nieminen MT; Novak-Frazer L; Rautemaa W; Rajendran R; Sorsa T; Ramage G; Bowyer P; Rautemaa R PLoS One; 2014; 9(7):e101859. PubMed ID: 24991987 [TBL] [Abstract][Full Text] [Related]
39. β-1,3-glucanase disrupts biofilm formation and increases antifungal susceptibility of Candida albicans DAY185. Tan Y; Ma S; Leonhard M; Moser D; Schneider-Stickler B Int J Biol Macromol; 2018 Mar; 108():942-946. PubMed ID: 29104052 [TBL] [Abstract][Full Text] [Related]
40. A novel antifungal is active against Candida albicans biofilms and inhibits mutagenic acetaldehyde production in vitro. Nieminen MT; Novak-Frazer L; Rautemaa V; Rajendran R; Sorsa T; Ramage G; Bowyer P; Rautemaa R PLoS One; 2014; 9(5):e97864. PubMed ID: 24867320 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]