These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 11515549)
1. Is your ribozyme design really correct?: A proposal of simple single turnover competition assay to evaluate ribozymes. Tanaka T; Inui O; Dohi N; Okada N; Okada H; Kikuchi Y Biosci Biotechnol Biochem; 2001 Jul; 65(7):1636-44. PubMed ID: 11515549 [TBL] [Abstract][Full Text] [Related]
2. Comparative study of two ribozymes and DNA-enzyme against the same RNA target. Inui O; Kikuchi Y; Dohi N; Okada N; Okada H; Tanaka T Nucleic Acids Symp Ser; 1999; (42):217-8. PubMed ID: 10780457 [TBL] [Abstract][Full Text] [Related]
3. Efficient RNA ligation by reverse-joined hairpin ribozymes and engineering of twin ribozymes consisting of conventional and reverse-joined hairpin ribozyme units. Ivanov SA; Vauléon S; Müller S FEBS J; 2005 Sep; 272(17):4464-74. PubMed ID: 16128815 [TBL] [Abstract][Full Text] [Related]
4. Hammerhead ribozymes targeted to the FBN1 mRNA can discriminate a single base mismatch between ribozyme and target. Phylactou LA; Tsipouras P; Kilpatrick MW Biochem Biophys Res Commun; 1998 Aug; 249(3):804-10. PubMed ID: 9731217 [TBL] [Abstract][Full Text] [Related]
5. Construction of new hairpin ribozymes with replaced domains. Komatsu Y; Kanzaki I; Koizumi M; Ohtsuka E Nucleic Acids Symp Ser; 1995; (34):223-4. PubMed ID: 8841632 [TBL] [Abstract][Full Text] [Related]
6. Measurements of weak interactions between truncated substrates and a hammerhead ribozyme by competitive kinetic analyses: implications for the design of new and efficient ribozymes with high sequence specificity. Kasai Y; Shizuku H; Takagi Y; Warashina M; Taira K Nucleic Acids Res; 2002 Jun; 30(11):2383-9. PubMed ID: 12034825 [TBL] [Abstract][Full Text] [Related]
8. Design of the hairpin ribozyme for targeting specific RNA sequences. Hampel A; DeYoung MB; Galasinski S; Siwkowski A Methods Mol Biol; 1997; 74():171-7. PubMed ID: 9204432 [TBL] [Abstract][Full Text] [Related]
9. Regulation of ribozyme cleavage activity by oligonucleotides. Komatsu Y; Ohtsuka E Methods Mol Biol; 2004; 252():165-77. PubMed ID: 15017048 [TBL] [Abstract][Full Text] [Related]
10. Examination of the catalytic fitness of the hammerhead ribozyme by in vitro selection. Tang J; Breaker RR RNA; 1997 Aug; 3(8):914-25. PubMed ID: 9257650 [TBL] [Abstract][Full Text] [Related]
11. Optimization of an anti-HIV hairpin ribozyme by in vitro selection. Joseph S; Burke JM J Biol Chem; 1993 Nov; 268(33):24515-8. PubMed ID: 8227004 [TBL] [Abstract][Full Text] [Related]
13. The structure, function and application of the hammerhead ribozyme. Birikh KR; Heaton PA; Eckstein F Eur J Biochem; 1997 Apr; 245(1):1-16. PubMed ID: 9128718 [TBL] [Abstract][Full Text] [Related]
14. Intracellular selection of trans-cleaving hammerhead ribozymes. Huang X; Zhao Y; Pu Q; Liu G; Peng Y; Wang F; Chen G; Sun M; Du F; Dong J; Cui X; Tang Z; Mo X Nucleic Acids Res; 2019 Mar; 47(5):2514-2522. PubMed ID: 30649474 [TBL] [Abstract][Full Text] [Related]
15. A modern mode of activation for nucleic acid enzymes. Lévesque D; Brière FP; Perreault JP PLoS One; 2007 Jul; 2(7):e673. PubMed ID: 17653287 [TBL] [Abstract][Full Text] [Related]
16. Construction of new ribozymes requiring short regulator oligonucleotides as a cofactor. Komatsu Y; Yamashita S; Kazama N; Nobuoka K; Ohtsuka E J Mol Biol; 2000 Jun; 299(5):1231-43. PubMed ID: 10873448 [TBL] [Abstract][Full Text] [Related]
18. A general strategy for effector-mediated control of RNA-cleaving ribozymes and DNA enzymes. Wang DY; Lai BH; Sen D J Mol Biol; 2002 Apr; 318(1):33-43. PubMed ID: 12054766 [TBL] [Abstract][Full Text] [Related]
19. Structural diversity of self-cleaving ribozymes. Tang J; Breaker RR Proc Natl Acad Sci U S A; 2000 May; 97(11):5784-9. PubMed ID: 10823936 [TBL] [Abstract][Full Text] [Related]