These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 11516079)

  • 1. Association of vancomycin and calcium phosphate by dynamic compaction: in vitro characterization and microbiological activity.
    Gautier H; Daculsi G; Merle C
    Biomaterials; 2001 Sep; 22(18):2481-7. PubMed ID: 11516079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isostatic compression, a new process for incorporating vancomycin into biphasic calcium phosphate: comparison with a classical method.
    Gautier H; Merle C; Auget JL; Daculsi G
    Biomaterials; 2000 Feb; 21(3):243-9. PubMed ID: 10646940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic compaction: a new process to compact therapeutic agent-loaded calcium phosphates.
    Trécant M; Guicheux J; Grimandi G; Leroy M; Daculsi G
    Biomaterials; 1997 Jan; 18(2):141-5. PubMed ID: 9022961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium-deficient apatite: influence of granule size and consolidation mode on release and in vitro activity of vancomycin.
    Obadia L; Amador G; Daculsi G; Bouler JM
    Biomaterials; 2003 Mar; 24(7):1265-70. PubMed ID: 12527267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of isostatic compression on the stability of vancomycin loaded with a calcium phosphate-implantable drug delivery device.
    Gautier H; Caillon J; Le Ray AM; Daculsi G; Merle C
    J Biomed Mater Res; 2000 Nov; 52(2):308-14. PubMed ID: 10951369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological activities of sustained polymyxin B release from calcium phosphate biomaterial prepared by dynamic compaction: an in vitro study.
    Kimakhe S; Bohic S; Larrose C; Reynaud A; Pilet P; Giumelli B; Heymann D; Daculsi G
    J Biomed Mater Res; 1999 Oct; 47(1):18-27. PubMed ID: 10400876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compactibility study of calcium phosphate biomaterials.
    Nicolazo C; Gautier H; Brandao MJ; Daculsi G; Merle C
    Biomaterials; 2003 Jan; 24(2):255-62. PubMed ID: 12419626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibacterial, anti-inflammatory, and bone-regenerative dual-drug-loaded calcium phosphate nanocarriers-in vitro and in vivo studies.
    Madhumathi K; Rubaiya Y; Doble M; Venkateswari R; Sampath Kumar TS
    Drug Deliv Transl Res; 2018 Oct; 8(5):1066-1077. PubMed ID: 29717475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro characterisation of calcium phosphate biomaterials loaded with lidocaine hydrochloride and morphine hydrochloride.
    Gautier H; Chamblain V; Weiss P; Merle C; Bouler JM
    J Mater Sci Mater Med; 2010 Dec; 21(12):3141-50. PubMed ID: 21046202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Chitin Source and Polymorphism on Powder Compression and Compaction: Application in Drug Delivery.
    Al-Hmoud L; Abu Fara D; Rashid I; Chowdhry BZ; Badwan AA
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33198143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compaction strategies for modifying the drug delivery capabilities of gelled calcium polyphosphate matrices.
    Petrone C; Hall G; Langman M; Filiaggi MJ
    Acta Biomater; 2008 Mar; 4(2):403-13. PubMed ID: 17997374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-strength resorbable brushite bone cement with controlled drug-releasing capabilities.
    Hofmann MP; Mohammed AR; Perrie Y; Gbureck U; Barralet JE
    Acta Biomater; 2009 Jan; 5(1):43-9. PubMed ID: 18799378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing the efficacy of three bioceramic matrices for the release of vancomycin hydrochloride.
    Jiang PJ; Patel S; Gbureck U; Caley R; Grover LM
    J Biomed Mater Res B Appl Biomater; 2010 Apr; 93(1):51-8. PubMed ID: 20024966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring vancomycin release from beta-TCP/agarose scaffolds.
    Cabañas MV; Peña J; Román J; Vallet-Regí M
    Eur J Pharm Sci; 2009 Jun; 37(3-4):249-56. PubMed ID: 19491012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the physicochemical properties and compaction behavior of melt granules produced in microwave-induced and conventional melt granulation in a single pot high shear processor.
    Loh ZH; Sia BY; Heng PW; Lee CC; Liew CV
    AAPS PharmSciTech; 2011 Dec; 12(4):1374-83. PubMed ID: 22005957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BCP ceramic microspheres as drug delivery carriers: synthesis, characterisation and doxycycline release.
    Victor SP; Kumar TS
    J Mater Sci Mater Med; 2008 Jan; 19(1):283-90. PubMed ID: 17597367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vancomycin release behaviour from amorphous calcium polyphosphate matrices intended for osteomyelitis treatment.
    Dion A; Langman M; Hall G; Filiaggi M
    Biomaterials; 2005 Dec; 26(35):7276-85. PubMed ID: 16024076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The controlled release of vancomycin in gelatin/β-TCP composite scaffolds.
    Zhou J; Fang T; Wang Y; Dong J
    J Biomed Mater Res A; 2012 Sep; 100(9):2295-301. PubMed ID: 22499502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of low-shear and high-shear granulation processes: effect on implantable calcium phosphate granule properties.
    Chevalier E; Viana M; Cazalbou S; Chulia D
    Drug Dev Ind Pharm; 2009 Oct; 35(10):1255-63. PubMed ID: 19555242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Injectable borate glass/chitosan composite as drug carrier for treatment of chronic osteomyelitis].
    Zhao C; Wang X; Zhang C; Cui X; Jia W; Huang W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Jun; 26(6):641-6. PubMed ID: 22792754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.