BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 11516513)

  • 1. Characterization of complexes of an antisense oligonucleotide with protamine and poly-L-lysine salts.
    González Ferreiro M; Tillman L; Hardee G; Bodmeier R
    J Control Release; 2001 Jun; 73(2-3):381-90. PubMed ID: 11516513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Albumin-protamine-oligonucleotide nanoparticles as a new antisense delivery system. Part 1: physicochemical characterization.
    Lochmann D; Weyermann J; Georgens C; Prassl R; Zimmer A
    Eur J Pharm Biopharm; 2005 Apr; 59(3):419-29. PubMed ID: 15760722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antisense delivery using protamine-oligonucleotide particles.
    Junghans M; Kreuter J; Zimmer A
    Nucleic Acids Res; 2000 May; 28(10):E45. PubMed ID: 10773093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new non-viral DNA delivery vector: the terplex system.
    Kim JS; Kim BI; Maruyama A; Akaike T; Kim SW
    J Control Release; 1998 Apr; 53(1-3):175-82. PubMed ID: 9741925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alginate/poly-L-lysine microparticles for the intestinal delivery of antisense oligonucleotides.
    González Ferreiro M; Tillman LG; Hardee G; Bodmeier R
    Pharm Res; 2002 Jun; 19(6):755-64. PubMed ID: 12134944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physicochemical and disposition characteristics of antisense oligonucleotides complexed with glycosylated poly(L-lysine).
    Mahato RI; Takemura S; Akamatsu K; Nishikawa M; Takakura Y; Hashida M
    Biochem Pharmacol; 1997 Mar; 53(6):887-95. PubMed ID: 9113108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of polycationic complexes of an antisense oligonucleotide in rat small intestine homogenates.
    González Ferreiro M; Crooke RM; Tillman L; Hardee G; Bodmeier R
    Eur J Pharm Biopharm; 2003 Jan; 55(1):19-26. PubMed ID: 12551700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zeta potential of transfection complexes formed in serum-free medium can predict in vitro gene transfer efficiency of transfection reagent.
    Son KK; Tkach D; Patel DH
    Biochim Biophys Acta; 2000 Sep; 1468(1-2):11-4. PubMed ID: 11018646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of alginate/poly-L-lysine particles as antisense oligonucleotide carriers.
    González Ferreiro M; Tillman L; Hardee G; Bodmeier R
    Int J Pharm; 2002 Jun; 239(1-2):47-59. PubMed ID: 12052690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cationic lipid-protamine-DNA (LPD) complexes for delivery of antisense c-myc oligonucleotides.
    Junghans M; Loitsch SM; Steiniger SC; Kreuter J; Zimmer A
    Eur J Pharm Biopharm; 2005 Jul; 60(2):287-94. PubMed ID: 15939239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Albumin-protamine-oligonucleotide-nanoparticles as a new antisense delivery system. Part 2: cellular uptake and effect.
    Weyermann J; Lochmann D; Georgens C; Zimmer A
    Eur J Pharm Biopharm; 2005 Apr; 59(3):431-8. PubMed ID: 15760723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of antisense oligonucleotide drug delivery systems.
    Weyermann J; Lochmann D; Zimmer A
    J Control Release; 2004 Dec; 100(3):411-23. PubMed ID: 15567506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular tracking of protamine/antisense oligonucleotide nanoparticles and their inhibitory effect on HIV-1 transactivation.
    Dinauer N; Lochmann D; Demirhan I; Bouazzaoui A; Zimmer A; Chandra A; Kreuter J; von Briesen H
    J Control Release; 2004 May; 96(3):497-507. PubMed ID: 15120905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dendritic alpha,epsilon-poly(L-lysine)s as delivery agents for antisense oligonucleotides.
    Eom KD; Park SM; Tran HD; Kim MS; Yu RN; Yoo H
    Pharm Res; 2007 Aug; 24(8):1581-9. PubMed ID: 17373579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physicochemical characterization of protamine-phosphorothioate nanoparticles.
    Lochmann D; Vogel V; Weyermann J; Dinauer N; von Briesen H; Kreuter J; Schubert D; Zimmer A
    J Microencapsul; 2004 Sep; 21(6):625-41. PubMed ID: 15762320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of electrostatic interactions and complex formation of ɣ-poly-glutamic acid (PGA) and ɛ-poly-l-lysine (PLL) in aqueous solutions.
    Muriel Mundo JL; Liu J; Tan Y; Zhou H; Zhang Z; McClements DJ
    Food Res Int; 2020 Feb; 128():108781. PubMed ID: 31955754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manufacturing of a Secretoneurin Drug Delivery System with Self-Assembled Protamine Nanoparticles by Titration.
    Scheicher B; Lorenzer C; Gegenbauer K; Partlic J; Andreae F; Kirsch AH; Rosenkranz AR; Werzer O; Zimmer A
    PLoS One; 2016; 11(11):e0164149. PubMed ID: 27828968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monolayers of poly-L-lysine on mica--Electrokinetic characteristics.
    Morga M; Adamczyk Z; Gödrich S; Oćwieja M; Papastavrou G
    J Colloid Interface Sci; 2015 Oct; 456():116-24. PubMed ID: 26115031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of physico-chemical and process conditions on the physical stability of plasmid DNA complexes using response surface methodology.
    Mount CN; Lee LK; Yasin A; Scott A; Fearn T; Shamlou PA
    Biotechnol Appl Biochem; 2003 Jun; 37(Pt 3):225-34. PubMed ID: 12683954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted delivery of plasmid DNA to hepatocytes in vivo: optimization of the pharmacokinetics of plasmid DNA/galactosylated poly(L-lysine) complexes by controlling their physicochemical properties.
    Nishikawa M; Takemura S; Takakura Y; Hashida M
    J Pharmacol Exp Ther; 1998 Oct; 287(1):408-15. PubMed ID: 9765363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.