These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 11516539)

  • 1. Evaluation of a 1 MHz transducer for transcranial Doppler ultrasound including embolic signal detection.
    Cullinane M; Markus HS
    Ultrasound Med Biol; 2001 Jun; 27(6):795-800. PubMed ID: 11516539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of a 1-MHz and a 2-MHz probe for microembolus detection using transcranial Doppler ultrasound.
    Droste DW; Lerner T; Dittrich R; Ritter M; Ringelstein EB
    Neurol Res; 2005 Jul; 27(5):471-6. PubMed ID: 15978172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term ambulatory monitoring for cerebral emboli using transcranial Doppler ultrasound.
    Mackinnon AD; Aaslid R; Markus HS
    Stroke; 2004 Jan; 35(1):73-8. PubMed ID: 14684774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of new online automated embolic signal detection algorithm, including comparison with panel of international experts.
    Cullinane M; Reid G; Dittrich R; Kaposzta Z; Ackerstaff R; Babikian V; Droste DW; Grossett D; Siebler M; Valton L; Markus HS
    Stroke; 2000 Jun; 31(6):1335-41. PubMed ID: 10835453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinguishing air from solid emboli using ultrasound: in-vitro study of the effect of Doppler carrier frequency.
    Rodriguez RA; Rodriguez CD; Mesana T; Nathan HJ
    J Neuroimaging; 2007 Jul; 17(3):211-8. PubMed ID: 17608906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Online automatic discrimination between solid and gaseous cerebral microemboli with the first multifrequency transcranial Doppler.
    Russell D; Brucher R
    Stroke; 2002 Aug; 33(8):1975-80. PubMed ID: 12154248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diagnostic yield of a 1-MHz transducer in evaluation of the basal cerebral arteries.
    Georgiadis D; Karatschai R; Uhlmann F; Lindner A
    J Neuroimaging; 1999 Jan; 9(1):15-8. PubMed ID: 9922718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method to distinguish between gaseous and solid cerebral emboli in patients with prosthetic heart valves.
    Rodriguez RA; Nathan HJ; Ruel M; Rubens F; Dafoe D; Mesana T
    Eur J Cardiothorac Surg; 2009 Jan; 35(1):89-95. PubMed ID: 18952455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of Doppler embolic signals observed following carotid endarterectomy.
    Chung EM; Fan L; Naylor AR; Evans DH
    Ultrasound Med Biol; 2006 Jul; 32(7):1011-23. PubMed ID: 16829315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of ultrasound propagation through ex-vivo human temporal bone.
    Ammi AY; Mast TD; Huang IH; Abruzzo TA; Coussios CC; Shaw GJ; Holland CK
    Ultrasound Med Biol; 2008 Oct; 34(10):1578-89. PubMed ID: 18456391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcranial Doppler sound detection of cerebral microembolism during transapical aortic valve implantation.
    Drews T; Pasic M; Buz S; Unbehaun A; Dreysse S; Kukucka M; Mladenow A; Hetzer R
    Thorac Cardiovasc Surg; 2011 Jun; 59(4):237-42. PubMed ID: 21442580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of transducer frequency on Doppler microemboli signals in an in vivo model.
    Georgiadis D; Wenzel A; Zerkowski HR; Zierz S; Lindner A
    Neurol Res; 1998 Apr; 20(3):198-200. PubMed ID: 9583579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coded excitation in TCD ultrasound systems to improve axial resolution.
    Cowe J; Gittins J; Evans DH
    Ultrasound Med Biol; 2007 Aug; 33(8):1296-308. PubMed ID: 17466448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RF signals provide additional information on embolic events recorded during TCD monitoring.
    Cowe J; Gittins J; Naylor AR; Evans DH
    Ultrasound Med Biol; 2005 May; 31(5):613-23. PubMed ID: 15866411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can transcranial Doppler discriminate between solid and gaseous microemboli? Assessment of a dual-frequency transducer system.
    Markus HS; Punter M
    Stroke; 2005 Aug; 36(8):1731-4. PubMed ID: 16020767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of ultrasound-detected cerebral microemboli in patients undergoing cardiac catheterization using an in vitro middle cerebral artery model.
    Yang Y; Grosset DG; Yang T; Lees KR
    Catheter Cardiovasc Interv; 2001 Jul; 53(3):323-30. PubMed ID: 11458408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Timing of clinically significant microembolism after carotid endarterectomy.
    Abbott AL; Levi CR; Stork JL; Donnan GA; Chambers BR
    Cerebrovasc Dis; 2007; 23(5-6):362-7. PubMed ID: 17268167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of microembolic signals detected near their origins in middle cerebral artery stenoses.
    Gao S; Wong KS
    J Neuroimaging; 2003 Apr; 13(2):124-32. PubMed ID: 12722494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thrombus size and Doppler embolic signal intensity.
    Martin MJ; Chung EM; Ramnarine KV; Goodall AH; Naylor AR; Evans DH
    Cerebrovasc Dis; 2009; 28(4):397-405. PubMed ID: 19713699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel method for transcranial Doppler microembolic signal monitoring at the vertebrobasilar junction in vertebral artery dissection patients.
    Yamaoka Y; Ichikawa Y; Kimura T; Sameshima T; Ochiai C; Morita A
    J Neuroimaging; 2014; 24(2):191-4. PubMed ID: 23228102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.