BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 11516826)

  • 21. The functional significance of gap junction channels in the epileptogenicity and seizure susceptibility of juvenile rats.
    Gajda Z; Hermesz E; Gyengési E; Szupera Z; Szente M
    Epilepsia; 2006 Jun; 47(6):1009-22. PubMed ID: 16822247
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thapsigargin inhibits bicuculline-induced epileptiform excitability in rat hippocampal slices.
    Wülfert E; Margineanu DG
    Neurosci Lett; 1998 Feb; 243(1-3):141-3. PubMed ID: 9535133
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NMDA receptors regulate developmental gap junction uncoupling via CREB signaling.
    Arumugam H; Liu X; Colombo PJ; Corriveau RA; Belousov AB
    Nat Neurosci; 2005 Dec; 8(12):1720-6. PubMed ID: 16299502
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The anti-ulcer agent, irsogladine, increases insulin secretion by MIN6 cells.
    Matsumoto T; Sakurai K; Tanaka A; Ishibashi T; Tachibana K; Ishikawa K; Yokote K
    Eur J Pharmacol; 2012 Jun; 685(1-3):213-7. PubMed ID: 22542662
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbenoxolone blockade of neuronal network activity in culture is not mediated by an action on gap junctions.
    Rouach N; Segal M; Koulakoff A; Giaume C; Avignone E
    J Physiol; 2003 Dec; 553(Pt 3):729-45. PubMed ID: 14514879
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatiotemporal distribution of intracellular calcium transients during epileptiform activity in guinea pig hippocampal slices.
    Albowitz B; König P; Kuhnt U
    J Neurophysiol; 1997 Jan; 77(1):491-501. PubMed ID: 9120590
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Specific gap junctions enhance the neuronal vulnerability to brain traumatic injury.
    Frantseva MV; Kokarovtseva L; Naus CG; Carlen PL; MacFabe D; Perez Velazquez JL
    J Neurosci; 2002 Feb; 22(3):644-53. PubMed ID: 11826094
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Postnatal development of intrinsic GABAergic rhythms in mouse hippocampus.
    Wong T; Zhang XL; Asl MN; Wu CP; Carlen PL; Zhang L
    Neuroscience; 2005; 134(1):107-20. PubMed ID: 15961234
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Blockade of gap junctions in vivo provides neuroprotection after perinatal global ischemia.
    de Pina-Benabou MH; Szostak V; Kyrozis A; Rempe D; Uziel D; Urban-Maldonado M; Benabou S; Spray DC; Federoff HJ; Stanton PK; Rozental R
    Stroke; 2005 Oct; 36(10):2232-7. PubMed ID: 16179575
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Can gap-junction blockade preferentially inhibit neuronal hypersynchrony vs. excitability?
    Margineanu DG; Klitgaard H
    Neuropharmacology; 2001 Sep; 41(3):377-83. PubMed ID: 11522329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Laminar analysis of initiation and spread of epileptiform discharges in three in vitro models.
    Borbély S; Halasy K; Somogyvári Z; Détári L; Világi I
    Brain Res Bull; 2006 Mar; 69(2):161-7. PubMed ID: 16533665
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gap junctions between CA3 pyramidal cells contribute to network synchronization in neonatal hippocampus.
    Molchanova SM; Huupponen J; Lauri SE; Taira T
    Neuropharmacology; 2016 Aug; 107():9-17. PubMed ID: 26926429
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Repeated blockade of GABAA receptors in the medial septal region induces epileptiform activity in the hippocampus.
    Butuzova MV; Kitchigina VF
    Neurosci Lett; 2008 Mar; 434(1):133-8. PubMed ID: 18304731
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabotropic glutamate receptor activation modulates epileptiform activity in the hippocampus.
    Rutecki PA; Yang Y
    Neuroscience; 1997 Dec; 81(4):927-35. PubMed ID: 9330356
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exacerbation of Epilepsy by Astrocyte Alkalization and Gap Junction Uncoupling.
    Onodera M; Meyer J; Furukawa K; Hiraoka Y; Aida T; Tanaka K; Tanaka KF; Rose CR; Matsui K
    J Neurosci; 2021 Mar; 41(10):2106-2118. PubMed ID: 33478985
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Factors that regulate KiSS1 gene expression in the hippocampus.
    Arai AC; Orwig N
    Brain Res; 2008 Dec; 1243():10-8. PubMed ID: 18834866
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Propagation of postsynaptic currents and potentials via gap junctions in GABAergic networks of the rat hippocampus.
    Zsiros V; Aradi I; Maccaferri G
    J Physiol; 2007 Jan; 578(Pt 2):527-44. PubMed ID: 17110410
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms of Spontaneous Electrical Activity in the Developing Cerebral Cortex-Mouse Subplate Zone.
    Singh MB; White JA; McKimm EJ; Milosevic MM; Antic SD
    Cereb Cortex; 2019 Jul; 29(8):3363-3379. PubMed ID: 30169554
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NMDA receptor-dependent high-frequency network oscillations (100-300 Hz) in rat hippocampal slices.
    Papatheodoropoulos C
    Neurosci Lett; 2007 Mar; 414(3):197-202. PubMed ID: 17316998
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential sensitivity to bicuculline in three inbred mouse strains.
    Freund RK; Marley RJ; Wehner JM
    Brain Res Bull; 1987 May; 18(5):657-62. PubMed ID: 3607531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.