BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 11517449)

  • 1. Interactive effects of rearing temperature and oxygen on the development of Drosophila melanogaster.
    Frazier MR; Woods HA; Harrison JF
    Physiol Biochem Zool; 2001; 74(5):641-50. PubMed ID: 11517449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute and chronic effects of atmospheric oxygen on the feeding behavior of Drosophila melanogaster larvae.
    Farzin M; Albert T; Pierce N; VandenBrooks JM; Dodge T; Harrison JF
    J Insect Physiol; 2014 Sep; 68():23-9. PubMed ID: 25008193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical oxygen partial pressures and maximal tracheal conductances for Drosophila melanogaster reared for multiple generations in hypoxia or hyperoxia.
    Klok CJ; Kaiser A; Lighton JR; Harrison JF
    J Insect Physiol; 2010 May; 56(5):461-9. PubMed ID: 19682996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of temperature on responses to anoxia and oxygen reperfusion in Drosophila melanogaster.
    Schilman PE; Waters JS; Harrison JF; Lighton JR
    J Exp Biol; 2011 Apr; 214(Pt 8):1271-5. PubMed ID: 21430203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cold rearing improves cold-flight performance in Drosophila via changes in wing morphology.
    Frazier MR; Harrison JF; Kirkton SD; Roberts SP
    J Exp Biol; 2008 Jul; 211(Pt 13):2116-22. PubMed ID: 18552301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. More oxygen during development enhanced flight performance but not thermal tolerance of Drosophila melanogaster.
    Shiehzadegan S; Le Vinh Thuy J; Szabla N; Angilletta MJ; VandenBrooks JM
    PLoS One; 2017; 12(5):e0177827. PubMed ID: 28542380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of developmental plasticity on heat tolerance may be mediated by changes in cell size in Drosophila melanogaster.
    Verspagen N; Leiva FP; Janssen IM; Verberk WCEP
    Insect Sci; 2020 Dec; 27(6):1244-1256. PubMed ID: 31829515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental plasticity and stability in the tracheal networks supplying Drosophila flight muscle in response to rearing oxygen level.
    Harrison JF; Waters JS; Biddulph TA; Kovacevic A; Klok CJ; Socha JJ
    J Insect Physiol; 2018 Apr; 106(Pt 3):189-198. PubMed ID: 28927826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature dependent larval resource allocation shaping adult body size in Drosophila melanogaster.
    Bochdanovits Z; De Jong G
    J Evol Biol; 2003 Nov; 16(6):1159-67. PubMed ID: 14640407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energetics of metamorphosis in Drosophila melanogaster.
    Merkey AB; Wong CK; Hoshizaki DK; Gibbs AG
    J Insect Physiol; 2011 Oct; 57(10):1437-45. PubMed ID: 21810426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of reduced oxygen in the developmental physiology of growth and metamorphosis initiation in Drosophila melanogaster.
    Callier V; Shingleton AW; Brent CS; Ghosh SM; Kim J; Harrison JF
    J Exp Biol; 2013 Dec; 216(Pt 23):4334-40. PubMed ID: 24259256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plastic and evolved responses of larval tracheae and mass to varying atmospheric oxygen content in Drosophila melanogaster.
    Henry JR; Harrison JF
    J Exp Biol; 2004 Sep; 207(Pt 20):3559-67. PubMed ID: 15339952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid effects of humidity acclimation on stress resistance in Drosophila melanogaster.
    Aggarwal DD; Ranga P; Kalra B; Parkash R; Rashkovetsky E; Bantis LE
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Sep; 166(1):81-90. PubMed ID: 23688505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single and multigenerational responses of body mass to atmospheric oxygen concentrations in Drosophila melanogaster : evidence for roles of plasticity and evolution.
    Klok CJ; Hubb AJ; Harrison JF
    J Evol Biol; 2009 Dec; 22(12):2496-504. PubMed ID: 19878502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Responses of Drosophila melanogaster to atypical oxygen atmospheres.
    Skandalis DA; Stuart JA; Tattersall GJ
    J Insect Physiol; 2011 Apr; 57(4):444-51. PubMed ID: 21241703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complexity of the cold acclimation response in Drosophila melanogaster.
    Rako L; Hoffmann AA
    J Insect Physiol; 2006 Jan; 52(1):94-104. PubMed ID: 16257412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmentally-induced modulations of developmental rates do not affect the selection-mediated changes in pre-adult development time of fruit flies Drosophila melanogaster.
    Yadav P; Sharma VK
    J Insect Physiol; 2013 Jul; 59(7):729-37. PubMed ID: 23685003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of developmental stage on the sensitivity of cell and body size to hypoxia in Drosophila melanogaster.
    Heinrich EC; Farzin M; Klok CJ; Harrison JF
    J Exp Biol; 2011 May; 214(Pt 9):1419-27. PubMed ID: 21490250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring thermal behavior in smaller insects: A case study in Drosophila melanogaster demonstrates effects of sex, geographic origin, and rearing temperature on adult behavior.
    Rajpurohit S; Schmidt PS
    Fly (Austin); 2016 Oct; 10(4):149-61. PubMed ID: 27230726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal and Oxygen Flight Sensitivity in Ageing
    Szlachcic E; Czarnoleski M
    Biology (Basel); 2021 Sep; 10(9):. PubMed ID: 34571738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.