BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 11517602)

  • 21. Agrobacterium-mediated transformation of Bangladeshi Indica rices.
    Al-Forkan M; Power JB; Anthony P; Lowe KC; Davey MR
    Cell Mol Biol Lett; 2004; 9(2):287-300. PubMed ID: 15213809
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Suppression of an atypically spliced rice CACTA transposon transcript in transgenic plants.
    Greco R; Ouwerkerk PB; Pereira A
    Genetics; 2005 Apr; 169(4):2383-7. PubMed ID: 15687269
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Screening for and genetic analysis on T-DNA-inserted mutant pool in rice.
    Li AH; Zhang YF; Wu CY; Tang W; Wu R; Dai ZY; Liu GQ; Zhang HX; Pan XB
    Yi Chuan Xue Bao; 2006 Apr; 33(4):319-29. PubMed ID: 16625830
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Construction and application of efficient Ac-Ds transposon tagging vectors in rice.
    Qu S; Jeon JS; Ouwerkerk PB; Bellizzi M; Leach J; Ronald P; Wang GL
    J Integr Plant Biol; 2009 Nov; 51(11):982-92. PubMed ID: 19903220
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Improvement of transformation frequency of rice mediated by Agrobacterium].
    Yi ZL; Cao SY; Wang L; Chu CC; Li X; He SJ; Tang ZS; Zhou PH; Tian WZ
    Yi Chuan Xue Bao; 2001; 28(4):352-8. PubMed ID: 11329877
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens.
    Ishida Y; Saito H; Ohta S; Hiei Y; Komari T; Kumashiro T
    Nat Biotechnol; 1996 Jun; 14(6):745-50. PubMed ID: 9630983
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system.
    Frame BR; Shou H; Chikwamba RK; Zhang Z; Xiang C; Fonger TM; Pegg SE; Li B; Nettleton DS; Pei D; Wang K
    Plant Physiol; 2002 May; 129(1):13-22. PubMed ID: 12011333
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Rapidly obtaining the markerless transgenic rice with reduced amylose content by co-transformation and anther culture].
    Shen GZ; Wang XQ; Yin LQ; Cai XL; Wang ZY
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2004 Dec; 30(6):637-43. PubMed ID: 15643083
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Large-scale systematic study on stability of the Ds element and timing of transposition in rice.
    Szeverenyi I; Ramamoorthy R; Teo ZW; Luan HF; Ma ZG; Ramachandran S
    Plant Cell Physiol; 2006 Jan; 47(1):84-95. PubMed ID: 16275658
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Factors affecting Agrobacterium tumefaciens-mediated transformation of wheat (Triticum aestivum L.)].
    Wang YQ; Xiao XG; Zhang AM
    Yi Chuan Xue Bao; 2002; 29(3):260-5. PubMed ID: 12182083
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid, large-scale generation of Ds transposant lines and analysis of the Ds insertion sites in rice.
    Kim CM; Piao HL; Park SJ; Chon NS; Je BI; Sun B; Park SH; Park JY; Lee EJ; Kim MJ; Chung WS; Lee KH; Lee YS; Lee JJ; Won YJ; Yi G; Nam MH; Cha YS; Yun DW; Eun MY; Han CD
    Plant J; 2004 Jul; 39(2):252-63. PubMed ID: 15225289
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Development of transformation system of rice based on transformation-competent artificial chromosome (TAC) vector].
    Zhou LY; Jiang DG; Wu H; Zhuang CX; Liu YG; Mei MT
    Yi Chuan Xue Bao; 2005 May; 32(5):514-8. PubMed ID: 16018263
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient insertional mutagenesis in rice using the maize En/Spm elements.
    Kumar CS; Wing RA; Sundaresan V
    Plant J; 2005 Dec; 44(5):879-92. PubMed ID: 16297077
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly efficient transformation and plant regeneration of tall fescue mediated by Agrobacterium tumefaciens.
    Hu ZH; Chen JQ; Wu GT; Jin W; Lang CX; Huang RZ; Wang FL; Liu ZH; Chen XY
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Apr; 31(2):149-59. PubMed ID: 15840933
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Amplification and analysis of T-DNA flanking sequences in transgenic rice].
    Fang J; Zhai WX; Wang WM; Li SW; Zhu LH
    Yi Chuan Xue Bao; 2001; 28(4):345-51. PubMed ID: 11329876
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Milestones in crop biotechnology--transgenic cassava and Agrobacterium-mediated transformation of maize.
    Vasil IK
    Nat Biotechnol; 1996 Jun; 14(6):702-3. PubMed ID: 9630970
    [No Abstract]   [Full Text] [Related]  

  • 37. Frequency and pattern of transposition of the maize transposable element Ds in transgenic rice plants.
    Nakagawa Y; Machida C; Machida Y; Toriyama K
    Plant Cell Physiol; 2000 Jun; 41(6):733-42. PubMed ID: 10945343
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly effective expression of glutamine synthetase genes GS1 and GS2 in transgenic rice plants increases nitrogen-deficiency tolerance.
    Sun H; Huang QM; Su J
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Oct; 31(5):492-8. PubMed ID: 16222091
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Endosperm-specific expression of the ferritin gene in transgenic rice (Oryza sativa L.) results in increased iron content of milling rice].
    Liu QQ; Yao QH; Wang HM; Gu MH
    Yi Chuan Xue Bao; 2004 May; 31(5):518-24. PubMed ID: 15478615
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sunflower (Helianthus annuus L.).
    Lewi DM; Hopp HE; Escandón AS
    Methods Mol Biol; 2006; 343():291-7. PubMed ID: 16988353
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.